Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
BMC Pulm Med ; 24(1): 170, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589870

RESUMO

BACKGROUND: Autoimmune pulmonary alveolar proteinosis (APAP) is a diffuse lung disease that causes abnormal accumulation of lipoproteins in the alveoli; however, its pathogenesis remains unclear. Recently, APAP cases have been reported during the course of dermatomyositis. The combination of these two diseases may be coincidental; however, it may have been overlooked because differentiating APAP from a flare-up of interstitial pneumonia associated with dermatomyositis is challenging. This didactic case demonstrates the need for early APAP scrutiny. CASE PRESENTATION: A 50-year-old woman was diagnosed with anti-melanoma differentiation-associated gene 5 (anti-MDA5) antibody-positive dermatitis and interstitial pneumonia in April 2021. The patient was treated with corticosteroids, tacrolimus, and cyclophosphamide pulse therapy for interstitial pneumonia complicated by MDA5 antibody-positive dermatitis, which improved the symptoms and interstitial pneumonia. Eight months after the start of treatment, a new interstitial shadow appeared that worsened. Therefore, three additional courses of cyclophosphamide pulse therapy were administered; however, the respiratory symptoms and interstitial shadows did not improve. Respiratory failure progressed, and 14 months after treatment initiation, bronchoscopy revealed turbid alveolar lavage fluid, numerous foamy macrophages, and numerous periodic acid-Schiff-positive unstructured materials. Blood test results revealed high anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) antibody levels, leading to a diagnosis of APAP. The patient underwent whole-lung lavage, and the respiratory disturbance promptly improved. Anti-GM-CSF antibodies were measured from the cryopreserved serum samples collected at the time of diagnosis of anti-MDA5 antibody-positive dermatitis, and 10 months later, both values were significantly higher than normal. CONCLUSIONS: This is the first report of anti-MDA5 antibody-positive dermatomyositis complicated by interstitial pneumonia with APAP, which may develop during immunosuppressive therapy and be misdiagnosed as a re-exacerbation of interstitial pneumonia. In anti-MDA5 antibody-positive dermatomyositis, APAP comorbidity may have been overlooked, and early evaluation with bronchoalveolar lavage fluid and anti-GM-CSF antibody measurements should be considered, keeping the development of APAP in mind.


Assuntos
Doenças Autoimunes , Dermatite , Dermatomiosite , Doenças Pulmonares Intersticiais , Proteinose Alveolar Pulmonar , Feminino , Humanos , Pessoa de Meia-Idade , Proteinose Alveolar Pulmonar/complicações , Proteinose Alveolar Pulmonar/diagnóstico , Proteinose Alveolar Pulmonar/tratamento farmacológico , Dermatomiosite/complicações , Dermatomiosite/tratamento farmacológico , Autoanticorpos , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/tratamento farmacológico , Ciclofosfamida/uso terapêutico , Dermatite/complicações , Helicase IFIH1 Induzida por Interferon
2.
Anticancer Drugs ; 34(4): 605-608, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729850

RESUMO

Lenvatinib is a multitargeted kinase inhibitor and maintaining its dose intensity has been shown to be beneficial in patients with thyroid and hepatocellular carcinomas. However, most patients require lenvatinib interruption and dose reduction due to the high incidence of adverse events (AEs). Lenvatinib was recently approved in Japan for patients with unresectable thymic carcinoma; however, real-world evidence of its clinical benefit is limited. Here, we report the case of chemotherapy-refractory thymic carcinoma in a patient who was administered a starting dose of lenvatinib using a 5-day on/2-day off (weekend-off) protocol, followed by alternate-day administration after fatigue onset derived from overt or subclinical hypothyroidism. Consequently, the patient exhibited a durable response to lenvatinib, with a 17-month progression-free survival without any severe or intolerable AEs. The present case suggests that maintaining lenvatinib dose intensity using such alternative administration regimens contributes to favorable clinical outcomes in thymic carcinoma.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Quinolinas , Timoma , Neoplasias do Timo , Humanos , Timoma/tratamento farmacológico , Timoma/induzido quimicamente , Antineoplásicos/uso terapêutico , Compostos de Fenilureia/uso terapêutico , Carcinoma Hepatocelular/patologia , Quinolinas/uso terapêutico , Neoplasias Hepáticas/patologia , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/induzido quimicamente
3.
Pulm Pharmacol Ther ; 80: 102209, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907545

RESUMO

INTRODUCTION: Hyperoxia-induced lung injury is characterized by acute alveolar injury, disrupted epithelial-mesenchymal signaling, oxidative stress, and surfactant dysfunction, yet currently, there is no effective treatment. Although a combination of aerosolized pioglitazone (PGZ) and a synthetic lung surfactant (B-YL peptide, a surfactant protein B mimic) prevents hyperoxia-induced neonatal rat lung injury, whether it is also effective in preventing hyperoxia-induced adult lung injury is unknown. METHOD: Using adult mice lung explants, we characterize the effects of 24 and 72-h (h) exposure to hyperoxia on 1) perturbations in Wingless/Int (Wnt) and Transforming Growth Factor (TGF)-ß signaling pathways, which are critical mediators of lung injury, 2) aberrations of lung homeostasis and injury repair pathways, and 3) whether these hyperoxia-induced aberrations can be blocked by concomitant treatment with PGZ and B-YL combination. RESULTS: Our study reveals that hyperoxia exposure to adult mouse lung explants causes activation of Wnt (upregulation of key Wnt signaling intermediates ß-catenin and LEF-1) and TGF-ß (upregulation of key TGF-ß signaling intermediates TGF-ß type I receptor (ALK5) and SMAD 3) signaling pathways accompanied by an upregulation of myogenic proteins (calponin and fibronectin) and inflammatory cytokines (IL-6, IL-1ß, and TNFα), and alterations in key endothelial (VEGF-A and its receptor FLT-1, and PECAM-1) markers. All of these changes were largely mitigated by the PGZ + B-YL combination. CONCLUSION: The effectiveness of the PGZ + B-YL combination in blocking hyperoxia-induced adult mice lung injury ex-vivo is promising to be an effective therapeutic approach for adult lung injury in vivo.


Assuntos
Hiperóxia , Lesão Pulmonar , Animais , Camundongos , Hiperóxia/complicações , Hiperóxia/metabolismo , Pulmão , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/metabolismo , Pioglitazona/farmacologia , Pioglitazona/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Agonistas PPAR-gama , Tensoativos/metabolismo , Tensoativos/farmacologia , Fator de Crescimento Transformador beta/farmacologia
4.
FASEB J ; 35(7): e21702, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34153130

RESUMO

Perinatal smoke/nicotine exposure alters lung development and causes asthma in exposed offspring, transmitted transgenerationally. The mechanism underlying the transgenerational inheritance of perinatal smoke/nicotine-induced asthma remains unknown, but germline epigenetic modulations may play a role. Using a well-established rat model of perinatal nicotine-induced asthma, we determined the DNA methylation pattern of spermatozoa of F1 rats exposed perinatally to nicotine in F0 gestation. To identify differentially methylated regions (DMRs), reduced representation bisulfite sequencing was performed on spermatozoa of F1 litters. The top regulated gene body and promoter DMRs were tested for lung gene expression levels, and key proteins involved in lung development and repair were determined. The overall CpG methylation in F1 sperms across gene bodies, promoters, 5'-UTRs, exons, introns, and 3'-UTRs was not affected by nicotine exposure. However, the methylation levels were different between the different genomic regions. Eighty one CpG sites, 16 gene bodies, and 3 promoter regions were differentially methylated. Gene enrichment analysis of DMRs revealed pathways involved in oxidative stress, nicotine response, alveolar and brain development, and cellular signaling. Among the DMRs, Dio1 and Nmu were the most hypermethylated and hypomethylated genes, respectively. Gene expression analysis showed that the mRNA expression and DNA methylation were incongruous. Key proteins involved in lung development and repair were significantly different (FDR < 0.05) between the nicotine and placebo-treated groups. Our data show that DNA methylation is remodeled in offspring spermatozoa upon perinatal nicotine exposure. These epigenetic alterations may play a role in transgenerational inheritance of perinatal smoke/nicotine induced asthma.


Assuntos
Metilação de DNA , Epigênese Genética , Pulmão/patologia , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/patologia , Espermatozoides/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-Dawley , Espermatozoides/patologia
5.
Am J Respir Cell Mol Biol ; 65(5): 521-531, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34126864

RESUMO

Stem cells, including the resident lung mesenchymal stem cells (LMSCs), are critically important for injury repair. Compelling evidence links perinatal vitamin D (VD) deficiency to reactive airway disease; however, the effects of perinatal VD deficiency on LMSC function is unknown. We tested the hypothesis that perinatal VD deficiency alters LMSC proliferation, differentiation, and function, leading to an enhanced myogenic phenotype. We also determined whether LMSCs' effects on alveolar type II (ATII) cell function are paracrine. Using an established rat model of perinatal VD deficiency, we studied the effects of four dietary regimens (0, 250, 500, or 1,000 IU/kg cholecalciferol-supplemented groups). At Postnatal Day 21, LMSCs were isolated, and cell proliferation and differentiation (under basal and adipogenic induction conditions) were determined. LMSC paracrine effects on ATII cell proliferation and differentiation were determined by culturing ATII cells in LMSC-conditioned media from different experimental groups. Using flow cytometry, >95% of cells were CD45-ve, >90% were CD90 + ve, >58% were CD105 + ve, and >64% were Stro-1 + ve, indicating their stem cell phenotype. Compared with the VD-supplemented groups, LMSCs from the VD-deficient group demonstrated suppressed PPARγ, but enhanced Wnt signaling, under basal and adipogenic induction conditions. LMSCs from 250 VD- and 500 VD-supplemented groups effectively blocked the effects of perinatal VD deficiency. LMSC-conditioned media from the VD-deficient group inhibited ATII cell proliferation and differentiation compared with those from the 250 VD- and 500 VD-supplemented groups. These data support the concept that perinatal VD deficiency alters LMSC proliferation and differentiation, potentially contributing to increased respiratory morbidity seen in children born to mothers with VD deficiency.


Assuntos
Pulmão/citologia , Células-Tronco Mesenquimais/citologia , Deficiência de Vitamina D/complicações , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Pulmão/fisiologia , Pulmão/fisiopatologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/fisiologia , Gravidez , Ratos , Vitamina D/administração & dosagem , Vitamina D/farmacologia , Via de Sinalização Wnt
6.
FASEB J ; 34(12): 16073-16085, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047380

RESUMO

Intrauterine growth restriction (IUGR) leads to offspring obesity. In a maternal food restriction (MFR) during pregnancy-related IUGR rat model, bone marrow stem cells showed enhanced adipogenic programming; however, the effect of IUGR on white adipose tissue (WAT) progenitors is unknown. Here, by mRNA and functional profiling, we determined sex-specific adipogenic programming of WAT progenitors isolated from pups on the postnatal day (PND) 1 and 21. On PND1, PPARγ and Pref-1 expression was significantly downregulated in preadipocytes of both MFR males and females; however, at PND21, preadipocytes of MFR males showed upregulation in these genes. Even following adipogenic induction, both male and female MFR adipocytes exhibited lower PPARγ, ADRP, and adiponectin levels at PND1; however, at PND21 MFR male adipocytes showed an upward trend in the expression of these genes. An adipogenesis-specific RT-PCR array showed that male MFR adipocytes were programmed to exhibit stronger adipogenic propensity than females. Last, serum sex hormone and adipocyte estrogen/testosterone receptor expression profiles provide preliminary insights into the possible mechanism underlying sex-specific adipogenic programming in the IUGR offspring. In summary, IUGR programs WAT preadipocytes to greater adipogenic potential in males. Although the altered adipogenic programming following MFR was detectable at PND1, the changes were more pronounced at PND21, suggesting a potential role of postnatal nutrition in facilitating the sex-specific adipogenic programming in the IUGR offspring.


Assuntos
Adipogenia/fisiologia , Retardo do Crescimento Fetal/fisiopatologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Útero/fisiologia , Adipócitos/metabolismo , Adipócitos/fisiologia , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/metabolismo , Restrição Calórica/efeitos adversos , Células Cultivadas , Regulação para Baixo/fisiologia , Feminino , Retardo do Crescimento Fetal/metabolismo , Masculino , Modelos Animais , Estado Nutricional/fisiologia , PPAR gama/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima/fisiologia
7.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L576-L584, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755324

RESUMO

Prevention of bronchopulmonary dysplasia (BPD) in premature-birth babies continues to be an unmet medical need. Intramuscular vitamin A is currently employed in preterm neonates to prevent BPD but requires intramuscular injections in fragile neonates. We hypothesized that noninvasive inhaled delivery of vitamin A, targeted to lung, would be a more effective and tolerable strategy. We employed our well-established hyperoxia-injury neonatal rat model, exposing newborn rats to 7 days of constant extreme (95% O2) hyperoxia, comparing vitamin A dosed every 48 h via either aerosol inhalation or intramuscular injection with normoxic untreated healthy animals and vehicle-inhalation hyperoxia groups as positive and negative controls, respectively. Separately, similar vitamin A dosing of normoxia-dwelling animals was performed. Analyses after day 7 included characterization of alveolar histomorphology and protein biomarkers of alveolar maturation [surfactant protein C (SP-C), peroxisome proliferator-activated receptor (PPAR) γ, cholinephosphate cytidylyl transferase, vascular endothelial growth factor and its receptor, FLK-1, and retinoid X receptors (RXR-α, -ß, and -γ], apoptosis (Bcl2 and Bax) key injury repair pathway data including protein markers (ALK-5 and ß-catenin) and neutrophil infiltration, and serum vitamin A levels. Compared with intramuscular dosing, inhaled vitamin A significantly enhanced biomarkers of alveolar maturation, mitigated hyperoxia-induced lung damage, and enhanced surfactant protein levels, suggesting that it may be more efficacious in preventing BPD in extremely premature infants than the traditionally used IM dosing regimen. We speculate lung-targeted inhaled vitamin A may also be an effective therapy against other lung damaging conditions leading to BPD or, more generally, to acute lung injury.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Displasia Broncopulmonar/metabolismo , Hiperóxia/metabolismo , Pulmão/metabolismo , Vitamina A/metabolismo , Animais , Animais Recém-Nascidos , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Ratos
8.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L435-L443, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579381

RESUMO

Antenatal steroids (ANS) accelerate fetal lung maturation and reduce the incidence of respiratory distress syndrome. However, sex specificity, i.e., being less effective in males, and potential long-term neurodevelopmental sequelae, particularly with repeated courses, remain significant limitations. The differential sex response to ANS is likely mediated via the inhibitory effect of fetal androgens on steroid's stimulatory effect on alveolar epithelial-mesenchymal interactions. Since peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists accelerate lung maturation by stimulating alveolar epithelial-mesenchymal interactions, independent of fetal sex, we hypothesized that the effect of PPAR-γ agonist pioglitazone (PGZ) would be sex-independent. Pregnant Sprague-Dawley rat dams were intraperitoneally administered dexamethasone (DEX) or PGZ on embryonic day (e) 18 and e19. At e20, pups were delivered by cesarean section, and fetal lungs and brains were examined for markers of lung maturation and apoptosis, respectively. Mixed epithelial-fibroblast cell cultures were examined to gain mechanistic insights. Antenatal PGZ increased alveolar epithelial and mesenchymal maturation markers equally in males and females; in contrast, antenatal DEX had sex-specific effects. Additionally, unlike DEX, antenatal PGZ did not increase hippocampal apoptosis. We conclude that PPAR-γ agonist administration is an effective, and probably even a superior, alternative to ANS for accelerating fetal lung maturity equally in both males and females.


Assuntos
Pulmão/efeitos dos fármacos , PPAR gama/agonistas , Pioglitazona/farmacologia , Alvéolos Pulmonares/efeitos dos fármacos , Maturidade Sexual , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Feminino , Masculino , Ratos Sprague-Dawley , Rosiglitazona/farmacologia , Caracteres Sexuais
9.
Am J Physiol Heart Circ Physiol ; 319(3): H651-H660, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32795172

RESUMO

Although increased predisposition to cardiac fibrosis and cardiac dysfunction has been demonstrated in the perinatally nicotine-exposed heart, the underlying mechanisms remain unclear. With the use of a well-established rat model and cultured primary neonatal rat cardiac fibroblasts, the effect of perinatal nicotine exposure on offspring heart extracellular matrix deposition and the likely underlying mechanisms were investigated. Perinatal nicotine exposure resulted in increased collagen type I (COL1A1) and III (COL3A1) deposition along with a decrease in miR-29 family and an increase in long noncoding RNA myocardial infarction-associated transcript (MIAT) levels in offspring heart. Nicotine treatment of isolated primary neonatal rat cardiac fibroblasts suggested that these effects were mediated via nicotinic acetylcholine receptors including α7 and the induced collagens accumulation was reversed by a gain-of function of miR-29 family. Knockdown of MIAT resulted in increased miR-29 family and decreased COL1A1 and COL3A1 levels, suggesting nicotine-mediated MIAT induction as the underlying mechanism for nicotine-induced collagen deposition. Luciferase reporter assay and RNA immunoprecipitation studies showed an intense physical interaction between MIAT, miR-29 family, and argonaute 2, corroborating the mechanistic link between perinatal nicotine exposure and increased extracellular matrix deposition. Overall, perinatal nicotine exposure resulted in lower miR-29 family levels in offspring heart, while it elevated cardiac MIAT and collagen type I and III levels. These findings provide mechanistic basis for cardiac dysfunction in perinatal nicotine-exposed offspring and offer multiple novel potential therapeutic targets.NEW & NOTEWORTHY Using an established rat model and cultured primary neonatal cardiac fibroblasts, we show that nicotine mediated MIAT induction as the underlying mechanism for the excessive cardiac collagen deposition. These observations provide mechanistic basis for the increased predisposition to cardiac dysfunction following perinatal cigarette/nicotine exposure and offer novel potential therapeutic targets.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Cardiopatias/induzido quimicamente , Miocárdio/metabolismo , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Fatores Etários , Animais , Animais Recém-Nascidos , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Matriz Extracelular/patologia , Feminino , Fibroblastos/patologia , Fibrose , Idade Gestacional , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Miocárdio/patologia , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Gravidez , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos Sprague-Dawley
10.
Support Care Cancer ; 28(10): 4825-4831, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31982960

RESUMO

PURPOSE: Although docetaxel plus ramucirumab has shown superior treatment efficacy over docetaxel monotherapy for patients with non-small cell lung cancer (NSCLC), the high rate of febrile neutropenia (FN) presents a clinical problem. This study aimed to validate the primary prophylactic use of pegfilgrastim with docetaxel and ramucirumab treatment in Japanese patients with NSCLC. METHODS: Patients with NSCLC with progression after at least one round of chemotherapy were enrolled and administered docetaxel (60 mg/m2) plus ramucirumab (10 mg/kg) intravenously on day 1, followed by pegylated-granulocyte colony-stimulating factor (3.6 mg) on day 2 of a 21-day treatment cycle. The primary study endpoint was the percentage of patients who developed FN. Secondary endpoints included overall survival, progression-free survival, overall response rate, and safety. RESULTS: Overall, 20 patients (15 men and 5 women) were enrolled, of whom one developed FN, resulting in an overall FN rate of 5%. The response and disease control rates were 40% and 85%, respectively. The median progression-free survival was 6.6 (95% confidence interval [CI], 0.5-NR) months. The median overall survival was 18.4 (95% CI, 2.2-11.0) months. Six patients aged over 75 years were included in this study, and although most adverse events were durable, ramucirumab-associated adverse events occurred more frequently in these patients. CONCLUSIONS: We observed a 5% FN rate using primary prophylactic pegylated-granulocyte colony-stimulating factor with docetaxel plus ramucirumab in Japanese patients with NSCLC. While most adverse events were durable, elderly patients should be closely monitored.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Filgrastim/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Polietilenoglicóis/administração & dosagem , Adulto , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neutropenia Febril Induzida por Quimioterapia/prevenção & controle , Progressão da Doença , Docetaxel/administração & dosagem , Docetaxel/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ramucirumab
11.
Chemotherapy ; 65(1-2): 21-28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32674095

RESUMO

INTRODUCTION: Treatment outcomes in patients with advanced non-small cell lung cancer (NSCLC) are poor due to limited treatment options. OBJECTIVE: We conducted a multicenter, single-arm phase II study to prospectively assess the efficacy and safety of weekly nab-PTX in patients with advanced NSCLC with failed cytotoxic chemotherapy. METHODS: Patients with advanced NSCLC having adequate organ functions with a performance status of 0-1 were enrolled. A 100 mg/m2 dose of nab-paclitaxel was administered on days 1, 8, and 15 of a 28-day cycle. Primary endpoint was the objective response rate (ORR). Secondary endpoints were disease control rate (DCR), toxicity profile, progression-free survival (PFS), and overall survival (OS). RESULTS: Between September 2013 and May 2016, 35 patients were enrolled. The ORR was 31.4%, and the DCR was 74.3%. The median PFS was 3.6 months, and the median OS was 11.4 months. The most common grade 3 or 4 toxicities included neutropenia (54.3%), leukopenia (42.9%), and anemia (11.4%). Two patients discontinued chemotherapy due to pneumonitis. CONCLUSIONS: Nab-PTX may be a later-line chemotherapeutic option for previously treated advanced NSCLC.


Assuntos
Paclitaxel Ligado a Albumina/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Idoso , Idoso de 80 Anos ou mais , Paclitaxel Ligado a Albumina/efeitos adversos , Antineoplásicos/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Intervalo Livre de Doença , Esquema de Medicação , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Neutropenia/etiologia , Pneumonia/etiologia , Resultado do Tratamento
12.
Biochem Biophys Res Commun ; 505(2): 586-592, 2018 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274776

RESUMO

Perinatal nicotine exposure can not only lead to lung dysplasia in offspring, but also cause epigenetic changes and induce transgenerational asthma. Previous studies have shown that electro-acupuncture (EA) applied to "Zusanli" (ST 36) can improve the lung morphology and correct abnormal expression of lung development-related protein in perinatal nicotine exposure offspring. However, it is still unclear whether ST 36 has a specific therapeutic effect and how maternal acupuncture can protect the offspring from pulmonary dysplasia. In this study, we compared the different effect of ST 36 and "Fenglong" (ST 40), which belong to the same meridian, in terms of lung pulmonary function and morphology, PPARγ, ß-catenin, GR levels in the lung tissues and CORT in the serum of perinatal nicotine exposure offspring, and explored the mechanism of acupuncture based on the maternal hypothalamus-pituitary-adrenal (HPA) axis. It is shown that EA applied to ST 36 could restore the normal function of maternal HPA axis and alleviate maternal glucocorticoid overexposure in offspring, thereby it can up-regulate the PTHrP/PPARγ and down-regulate the Wnt/ß-catenin signaling pathways, and protects perinatal nicotine exposure-induced pulmonary dysplasia in offspring. Its effect is better than that of ST 40. These results are of great significance in preventing perinatal nicotine exposure-induced pulmonary dysplasia in offspring.


Assuntos
Eletroacupuntura , Pulmão/anormalidades , Exposição Materna , Nicotina/toxicidade , Animais , Feminino , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , PPAR gama/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , beta Catenina/metabolismo
13.
Development ; 142(23): 4139-50, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26511927

RESUMO

Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development.


Assuntos
Fator 10 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/embriologia , Alvéolos Pulmonares/metabolismo , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Separação Celular , Células Cultivadas , Células Epiteliais/citologia , Feminino , Citometria de Fluxo , Deleção de Genes , Humanos , Lipídeos/química , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , PPAR gama/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Fatores de Tempo , Regulação para Cima
14.
Am J Physiol Regul Integr Comp Physiol ; 315(5): R1017-R1026, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30088984

RESUMO

Considerable epidemiological and experimental evidence supports the concept that the adult chronic lung disease (CLD), is due, at least in part, to aberrations in early lung development in response to an abnormal intrauterine environment; however, the underlying molecular mechanisms remain unknown. We used a well-established rat model of maternal undernutrition (MUN) during pregnancy that results in offspring intrauterine growth restriction (IUGR) and adult CLD to test the hypothesis that in response to MUN, excess maternal glucocorticoids (GCs) program offspring lung development to a CLD phenotype by altering microRNA (miR)-29 expression, which is a key miR in regulating extracellular matrix (ECM) deposition during development and injury-repair. At postnatal day 21 and 5 mo, compared with the control offspring lung, MUN offspring lung miR-29 expression was significantly decreased in conjunction with an elevated expression of multiple downstream target ECM proteins [collagen (COL)1A1, COL3A1, COL4A5, and elastin], at both mRNA and protein levels. Importantly, MUN-induced changes in miR-29 and target gene expressions were at least partially blocked in the lungs of offspring of MUN dams treated with metyrapone, a selective GC synthesis inhibitor. Furthermore, dexamethasone treatment of cultured fetal rat lung fibroblasts significantly induced miR-29 expression along with the suppression of target ECM proteins. These data, along with the previously known role of miR-29 in regulating ECM deposition in vascular tissue in the MUN offspring, suggest miR-29 to be a common mechanistic denominator for the vascular and pulmonary phenotypes in the IUGR offspring, providing a novel potential therapeutic target.


Assuntos
Pulmão/crescimento & desenvolvimento , MicroRNAs/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Proteínas da Matriz Extracelular/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Glucocorticoides/genética , Glucocorticoides/metabolismo , Pulmão/metabolismo , Masculino , Metirapona/metabolismo , Metirapona/farmacologia , Fenótipo , Gravidez , Ratos Sprague-Dawley
15.
Clin Sci (Lond) ; 132(21): 2357-2368, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30309879

RESUMO

Perinatal nicotine exposure drives the differentiation of alveolar lipofibroblasts (LIFs), which are critical for lung injury repair, to myofibroblasts (MYFs), which are the hallmark of chronic lung disease. Bone marrow-derived mesenchymal stem cells (BMSCs) are important players in lung injury repair; however, how these cells are affected with perinatal nicotine exposure and whether these can be preferentially driven to a lipofibroblastic phenotype are not known. We hypothesized that perinatal nicotine exposure would block offspring BMSCs lipogenic differentiation, driving these cells toward a MYF phenotype. Since peroxisome proliferator activated-receptor γ (PPARγ) agonists can prevent nicotine-induced MYF differentiation of LIFs, we further hypothesized that the modulation of PPARγ expression would inhibit nicotine's myogenic effect on BMSCs. Sprague Dawley dams were perinatally administered nicotine (1 mg/kg bodyweight) with or without the potent PPARγ agonist rosiglitazone (RGZ), both administered subcutaneously. At postnatal day 21, BMSCs were isolated and characterized morphologically, molecularly, and functionally for their lipogenic and myogenic potentials. Perinatal nicotine exposure resulted in decreased oil red O staining, triolein uptake, expression of PPARγ, and its downstream target gene adipocyte differentiation-related protein by BMSCs, but enhanced α-smooth muscle actin and fibronectin expression, and activated Wnt signaling, all features indicative of their inhibited lipogenic, but enhanced myogenic potential. Importantly, concomitant treatment with RGZ virtually blocked all of these nicotine-induced morphologic, molecular, and functional changes. Based on these data, we conclude that BMSCs can be directionally induced to differentiate into the lipofibroblastic phenotype, and PPARγ agonists can effectively block perinatal nicotine-induced MYF transdifferentiation, suggesting a possible molecular therapeutic approach to augment BMSC's lung injury/repair potential.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Adipogenia/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células Cultivadas , Feminino , Idade Gestacional , Exposição Materna , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Desenvolvimento Muscular/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Osteogênese/efeitos dos fármacos , PPAR gama/agonistas , PPAR gama/metabolismo , Fenótipo , Gravidez , Ratos Sprague-Dawley , Rosiglitazona/farmacologia
16.
Chemotherapy ; 62(4): 205-213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28380484

RESUMO

BACKGROUND: In patients with non-small-cell lung cancer (NSCLC), the effects of second-line chemotherapy on overall survival (OS) might be confounded by subsequent therapies. Therefore, using individual-level data, we aimed to determine the relationships between progression-free survival (PFS) and post-progression survival (PPS) with OS in patients with advanced NSCLC treated with docetaxel monotherapy as second-line chemotherapy. METHODS: Between April 2002 and December 2014, data from 86 patients with advanced NSCLC who underwent second-line docetaxel monotherapy following first-line treatment with platinum combination chemotherapy were analyzed. The relationships of PFS and PPS with OS were analyzed at the individual level. RESULTS: Spearman rank correlation and linear regression analyses showed that PPS was strongly associated with OS (r = 0.86, p < 0.05, R2 = 0.93), whereas PFS was moderately correlated with OS (r = 0.50, p < 0.05, R2 = 0.21). Performance status at the end of second-line treatment and the number of regimens after progression beyond second-line chemotherapy were significantly associated with PPS (p < 0.05). CONCLUSIONS: In patients with advanced NSCLC with unknown oncogenic driver mutations undergoing docetaxel monotherapy as second-line chemotherapy, when compared with PFS, PPS had a stronger association with OS. This finding suggests that subsequent treatment after disease progression following second-line docetaxel monotherapy has a significant influence on OS.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Taxoides/uso terapêutico , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Progressão da Doença , Intervalo Livre de Doença , Docetaxel , Quimioterapia Combinada , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Platina/química , Platina/uso terapêutico , Modelos de Riscos Proporcionais
17.
Int J Clin Oncol ; 22(5): 872-879, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28550415

RESUMO

BACKGROUND: Glucose-regulated protein (GRP) 78/immunoglobulin heavy chain binding protein (BiP) is a member of the endoplasmic reticulum chaperone family, and its role in various types of human malignancies has recently been investigated. However, the clinicopathological characteristics of GRP78/BiP in advanced thymic carcinoma (ATC) remain unknown. We aimed to examine the relationship between GRP78/BiP expression and the clinical outcomes of ATC patients. METHODS: Thirty-four patients with ATC receiving combination chemotherapy at three institutions between April 1998 and April 2014 were enrolled in this study. We retrospectively collected patient characteristics such as therapeutic efficacy, pathological findings, and survival data from their medical records. We performed immunohistochemical analysis to evaluate the expression of GRP78/BiP in tumor specimens obtained from surgical resection or biopsy. RESULTS: This study included 21 men (68%) and 13 women (32%) with a median age of 62 years (range 36-75 years). GRP78/BiP overexpression was observed in 65% of the patients (22 of 34 patients). There was no correlation between GRP78/BiP expression and any patient characteristic. Patients with a high level of GRP78/BiP expression had significantly longer overall survival (OS) compared to those with a low level (46.2 vs. 16.8 months, p = 0.04). Multivariate analysis demonstrated that a high level of GRP78/BiP expression was an independent prognostic factor for prolonged OS. CONCLUSIONS: Our findings indicate that the overexpression of GRP78/BiP is a novel predictor of favorable outcomes in patients with ATC who receive combination chemotherapy.


Assuntos
Proteínas de Choque Térmico/metabolismo , Timoma/tratamento farmacológico , Timoma/mortalidade , Neoplasias do Timo/tratamento farmacológico , Neoplasias do Timo/mortalidade , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Análise de Sobrevida , Timoma/metabolismo , Neoplasias do Timo/metabolismo , Resultado do Tratamento
18.
Int J Obes (Lond) ; 40(11): 1768-1775, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27599633

RESUMO

OBJECTIVE: Although intrauterine nutritional stress is known to result in offspring obesity and the metabolic phenotype, the underlying cellular/molecular mechanisms remain incompletely understood. We tested the hypothesis that compared with the controls, the bone marrow-derived mesenchymal stem cells (BMSCs) of the intrauterine growth-restricted (IUGR) offspring exhibit a more adipogenic phenotype. METHODS: A well-established rat model of maternal food restriction (MFR), that is, 50% global caloric restriction during the later-half of pregnancy and ad libitum diet following birth that is known to result in an obese offspring with a metabolic phenotype was used. BMSCs at 3 weeks of age were isolated, and then molecularly and functionally profiled. RESULTS: BMSCs of the intrauterine nutritionally-restricted offspring demonstrated an increased proliferation and an enhanced adipogenic molecular profile at miRNA, mRNA and protein levels, with an overall up-regulated PPARγ (miR-30d, miR-103, PPARγ, C/EPBα, ADRP, LPL, SREBP1), but down-regulated Wnt (LRP5, LEF-1, ß-catenin, ZNF521 and RUNX2) signaling profile. Following adipogenic induction, compared with the control BMSCs, the already up-regulated adipogenic profile of the MFR BMSCs, showed a further increased adipogenic response. CONCLUSIONS: Markedly enhanced adipogenic molecular profile and increased cell proliferation of MFR BMSCs suggest a possible novel cellular/mechanistic link between the intrauterine nutritional stress and offspring metabolic phenotype. This provides new potential predictive and therapeutic targets against these conditions in the IUGR offspring.


Assuntos
Adipogenia/fisiologia , Retardo do Crescimento Fetal/patologia , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Células-Tronco Mesenquimais/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Animais Recém-Nascidos , Restrição Calórica , Diferenciação Celular , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Retardo do Crescimento Fetal/genética , Fenômenos Fisiológicos da Nutrição Materna/genética , MicroRNAs , Fenótipo , Gravidez , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Regulação para Cima
19.
Lung ; 194(6): 931-943, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27614961

RESUMO

INTRODUCTION: The physiologic vitamin D (VD), 1α,25(OH)2D3 (1,25D) is a local paracrine/autocrine effecter of fetal lung maturation. By stimulating alveolar type II cell and lipofibroblast proliferation and differentiation, parenterally administered 1,25D has been shown to enhance neonatal lung maturation; but due to the potential systemic side effects of the parenteral route, the translational value of these findings might be limited. To minimize the possibility of systemic toxicity, we examined the effects of VD on neonatal lung maturation, when delivered directly to lungs via nebulization. METHODS: One-day-old rat pups were administered three different doses of 1,25D and its physiologic precursor 25(OH)D (25D), or the diluent, via nebulization daily for 14 days. Pups were sacrificed for lung, kidneys, and blood collection to determine markers of lung maturation, and serum 25D and calcium levels. RESULTS: Compared to controls, nebulized 25D and 1,25D enhanced lung maturation as evidenced by the increased expression of markers of alveolar epithelial (SP-B, leptin receptor), mesenchymal (PPARγ, C/EBPα), and endothelial (VEGF, FLK-1) differentiation, surfactant phospholipid synthesis, and lung morphology without any significant increases in serum 25D and calcium levels. CONCLUSIONS: Inhaled VD is a potentially safe and effective novel strategy to enhance neonatal lung maturation.


Assuntos
Calcitriol/administração & dosagem , Pulmão/efeitos dos fármacos , Pulmão/crescimento & desenvolvimento , Vitamina D/análogos & derivados , Vitaminas/administração & dosagem , Administração por Inalação , Células Epiteliais Alveolares/fisiologia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Calcitriol/efeitos adversos , Cálcio/sangue , Diferenciação Celular/efeitos dos fármacos , Colina/metabolismo , Endotélio/fisiologia , Pulmão/anatomia & histologia , Pulmão/metabolismo , Mesoderma/fisiologia , PPAR gama/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Calcitriol/metabolismo , Receptores para Leptina/metabolismo , Trioleína/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vitamina D/administração & dosagem , Vitamina D/efeitos adversos , Vitamina D/sangue , Vitaminas/efeitos adversos
20.
Lung ; 194(2): 325-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26899624

RESUMO

Perinatal smoke/nicotine exposure predisposes to chronic lung disease and morbidity. Mitochondrial abnormalities may contribute as the PPARγ pathway is involved in structural and functional airway deficits after perinatal nicotine exposure. We hypothesized perinatal nicotine exposure results in lung mitochondrial dysfunction that can be rescued by rosiglitazone (RGZ; PPARγ receptor agonist). Sprague-Dawley dams received placebo (CON), nicotine (NIC, 1 mg kg(-1)), or NIC + RGZ (3 mg kg(-1)) daily from embryonic day 6 to postnatal day 21. Parenchymal lung (~10 mg) was taken from adult male offspring for mitochondrial assessment in situ. ADP-stimulated O2 consumption was less in NIC and NIC + RGZ compared to CON (F[2,14] = 17.8; 4.5 ± 0.8 and 4.1 ± 1.4 vs. 8.8 ± 2.5 pmol s mg(-1); p < 0.05). The respiratory control ratio for ADP, an index of mitochondrial coupling, was reduced in NIC and remediated in NIC + RGZ (F[2,14] = 3.8; p < 0.05). Reduced mitochondrial oxidative capacity and abnormal coupling were evident after perinatal nicotine exposure. RGZ improved mitochondrial function through tighter coupling of oxidative phosphorylation.


Assuntos
Respiração Celular/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Fosforilação Oxidativa/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Feminino , Idade Gestacional , Pulmão/metabolismo , Exposição Materna , Mitocôndrias/metabolismo , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Gravidez , Ratos Sprague-Dawley , Rosiglitazona , Tiazolidinedionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA