Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365165

RESUMO

Deposition of atom-precise nanoclusters onto solid supports is a promising route to synthesize model heterogeneous catalysts. However, to enhance nanocluster-support interactions, activation of the nanoclusters by removal of surface ligands is necessary. Thermal treatment to remove surface ligands from supported metal nanoclusters can yield highly active heterogeneous catalysts, however, the high temperatures employed can lead to poor control over the final size and speciation of the nanoclusters. As an alternative to high-temperature thermal treatments, chemical activation of [Pd3(µ-Cl)(µ-PPh2)2(PPh3)3]+ (Pd3) nanoclusters on γ-Al2O3 supports under mild reaction conditions has been demonstrated in this work. Hydride-based reducing agents such as NaBH4, LiBH4, and LiAlH4 have been examined for the activation of the Pd3 nanoclusters. The structural evolution and speciation of the nanoclusters after activation have been monitored using a combination of XAS, XPS, STEM-EDX mapping, and solid-state NMR techniques. The results indicate that treatment with borohydride reducing agents successfully removed surface phosphine and chloride ligands, and the extent of size growth of the nanoclusters during activation is directly correlated with the amount of borohydride used. Borate side products remain on the γ-Al2O3 surface after activation; moreover, exposure to high amounts of NaBH4 resulted in the incorporation of B atoms inside the lattice of the activated Pd nanoclusters. LiAlH4 treatment, on the other hand, led to no significant size growth of the nanoclusters and resulted in a mixture of Pd single-atom sites and activated nanoclusters on the γ-Al2O3 surface. Finally, the catalytic potential of the activated nanoclusters has been tested in the transfer hydrogenation of trans-cinnamaldehyde, using sodium formate/formic acid as the hydrogen donor. The catalytic results showed that smaller Pd nanoclusters are much more selective for hydrogenating trans-cinnamaldehyde to hydrocinnamaldehyde, but overall have lower activity compared to larger Pd nanoparticles. Overall, this study showcases chemical activation routes as an alternative to traditional thermal activation routes for activating supported nanoclusters by offering improved speciation and size control.

2.
Nat Commun ; 15(1): 938, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296966

RESUMO

Electrochemical conversion of CO2 offers a sustainable route for producing fuels and chemicals. Pd-based catalysts are effective for converting CO2 into formate at low overpotentials and CO/H2 at high overpotentials, while undergoing poorly understood morphology and phase structure transformations under reaction conditions that impact performance. Herein, in-situ liquid-phase transmission electron microscopy and select area diffraction measurements are applied to track the morphology and Pd/PdHx phase interconversion under reaction conditions as a function of electrode potential. These studies identify the degradation mechanisms, including poisoning and physical structure changes, occurring in PdHx/Pd electrodes. Constant potential density functional theory calculations are used to probe the reaction mechanisms occurring on the PdHx structures observed under reaction conditions. Microkinetic modeling reveals that the intercalation of *H into Pd is essential for formate production. However, the change in electrochemical CO2 conversion selectivity away from formate and towards CO/H2 at increasing overpotentials is due to electrode potential dependent changes in the reaction energetics and not a consequence of morphology or phase structure changes.

3.
ACS Appl Mater Interfaces ; 14(22): 25545-25555, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604325

RESUMO

The direct growth of sub-100 nm thin-film metal oxides has witnessed a sustained interest as a superlative approach for the fabrication of smart energy storage platforms. Herein, sub-100 nm Zr-doped orthorhombic Nb2O5 nanotube films are synthesized directly on the Nb-Zr substrate and tested as negative supercapacitor electrode materials. To boost the pseudocapacitive performance of the fabricated films, supplement Nb4+ active sites (defects) are subtly induced into the metal oxide lattice, resulting in 13% improvement in the diffusion current at 100 m V/s over that of the defect-free counterpart. The defective sub-100 nm film (H-NbZr) exhibits areal and volumetric capacitances of 6.8 mF/cm2 and 758.3 F/cm3, respectively. The presence of oxygen-deficient states enhances the intrinsic conductivity of the thin film, resulting in a reduction in the band gap energy from 3.25 to 2.5 eV. The assembled supercapacitor device made of nitrogen-doped activated carbon (N-AC) and H-NbZr (N-AC//H-NbZr) is able to retain 93, 83, 78, and 66% of its first cycle capacitance after 1000, 2000, 3000, and 4500 successive charge/discharge cycles, respectively. An eminent energy record of approximately 0.77 µW h/cm2 at a power of 0.9 mW/cm2 is achieved at 1 mA/cm2 with superb capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA