Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Lipid Res ; 56(7): 1363-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26023073

RESUMO

Quantitation of plasma lipopolysaccharides (LPSs) might be used to document Gram-negative bacterial infection. In the present work, LPS-derived 3-hydroxymyristate was extracted from plasma samples with an organic solvent, separated by reversed phase HPLC, and quantitated by MS/MS. This mass assay was combined with the limulus amebocyte lysate (LAL) bioassay to monitor neutralization of LPS activity in biological samples. The described HPLC/MS/MS method is a reliable, practical, accurate, and sensitive tool to quantitate LPS. The combination of the LAL and HPLC/MS/MS analyses provided new evidence for the intrinsic capacity of plasma lipoproteins and phospholipid transfer protein to neutralize the activity of LPS. In a subset of patients with systemic inflammatory response syndrome, with documented infection but with a negative plasma LAL test, significant amounts of LPS were measured by the HPLC/MS/MS method. Patients with the highest plasma LPS concentration were more severely ill. HPLC/MS/MS is a relevant method to quantitate endotoxin in a sample, to assess the efficacy of LPS neutralization, and to evaluate the proinflammatory potential of LPS in vivo.


Assuntos
Análise Química do Sangue/métodos , Caranguejos Ferradura , Lipopolissacarídeos/sangue , Proteínas de Membrana/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem
2.
Front Microbiol ; 10: 1774, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428071

RESUMO

Lipopolysaccharides (LPS) originate from the outer membrane of Gram-negative bacteria and trigger an inflammatory response via the innate immune system. LPS consist of a lipid A moiety directly responsible for the stimulation of the proinflammatory cascade and a polysaccharide chain of variable length. LPS form aggregates of variable size and structure in aqueous media, and the aggregation/disaggregation propensity of LPS is known as a key determinant of their biological activity. The aim of the present study was to determine to which extent the length of the polysaccharide chain can affect the nature of LPS structures, their pharmacokinetics, and eventually their proinflammatory properties in vivo. LPS variants of Salmonella Minnesota with identical lipid A but with different polysaccharide moieties were used. The physical properties of LPS aggregates were analyzed by zetametry, dynamic light scattering, and microscopy. The stability of LPS aggregates was tested in the presence of plasma, whole blood, and cultured cell lines. LPS pharmacokinetics was performed in wild-type mice. The accumulation in plasma of rough LPS (R-LPS) with a short polysaccharidic chain was lower, and its hepatic uptake was faster as compared to smooth LPS (S-LPS) with a long polysaccharidic chain. The inflammatory response was weaker with R-LPS than with S-LPS. As compared to S-LPS, R-LPS formed larger aggregates, with a higher hydrophobicity index, a more negative zeta potential, and a higher critical aggregation concentration. The lower stability of R-LPS aggregates could be illustrated in vitro by a higher extent of association of LPS to plasma lipoproteins, faster binding to blood cells, and increased uptake by macrophages and hepatocytes, compared to S-LPS. Our data indicate that a long polysaccharide chain is associated with the formation of more stable aggregates with extended residence time in plasma and higher inflammatory potential. These results show that polysaccharide chain length, and overall aggregability of LPS might be helpful to predict the proinflammatory effect that can be expected in experimental settings using LPS preparations. In addition, better knowledge and control of LPS aggregation and disaggregation might lead to new strategies to enhance LPS detoxification in septic patients.

3.
ACS Chem Biol ; 9(3): 656-62, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24328371

RESUMO

Lipopolysaccharides (LPS) or endotoxins are amphipathic, pro-inflammatory components of the outer membrane of Gram-negative bacteria. In the host, LPS can trigger a systemic inflammatory response syndrome. To bring insight into in vivo tissue distribution and cellular uptake of LPS, dual labeling was performed with a bimodal molecular probe designed for fluorescence and nuclear imaging. LPS were labeled with DOTA-Bodipy-NCS, and pro-inflammatory properties were controlled after each labeling step. LPS were then radiolabeled with (111)In and subsequently injected intravenously into wild-type, C57B16 mice, and their in vivo behavior was followed by single photon emission computed tomography coupled with X-ray computed tomography (SPECT-CT) and fluorescence microscopy. Time course of liver uptake of radiolabeled LPS ((111)In-DOTA-Bodipy-LPS) was visualized over a 24-h period in the whole animal by SPECT-CT. In complementary histological analyses with fluorescent microscopy, the bulk of injected (111)In-DOTA-Bodipy-LPS was found to localize early within the liver. Serum kinetics of unlabeled and DOTA-Bodipy-labeled LPS in mouse plasma were similar as ascertained by direct quantitation of ß-hydroxymyristate, and DOTA-Bodipy-LPS was found to retain the potent, pro-inflammatory property of the unlabeled molecule as assessed by serum cytokine assays. It is concluded that the dual labeling process, involving the formation of covalent bonds between a DOTA-Bodipy-NCS probe and LPS molecules is relevant for imaging and kinetic analysis of LPS biodistribution, both in vivo and ex vivo. Data of the present study come in direct and visual support of a lipopolysaccharide transport through which pro-inflammatory LPS can be transported from the periphery to the liver for detoxification. The (111)In-DOTA-Bodipy-LPS probe arises here as a relevant tool to identify key components of LPS detoxification in vivo.


Assuntos
Complexos de Coordenação , Corantes Fluorescentes , Lipopolissacarídeos , Microscopia de Fluorescência/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Complexos de Coordenação/farmacocinética , Corantes Fluorescentes/farmacocinética , Radioisótopos de Índio , Marcação por Isótopo , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacocinética , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA