Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856082

RESUMO

A major challenge in biology is to understand how mechanical interactions and cellular behavior affect the shapes of tissues and embryo morphology. The extension of the neural tube and paraxial mesoderm, which form the spinal cord and musculoskeletal system respectively, results in the elongated shape of the vertebrate embryonic body. Despite our understanding of how each of these tissues elongates independently of the others, the morphogenetic consequences of their simultaneous growth and mechanical interactions are still unclear. Our study investigates how differential growth, tissue biophysical properties, and mechanical interactions affect embryonic morphogenesis during axial extension using a 2D multi-tissue continuum-based mathematical model. Our model captures the dynamics observed in vivo by time-lapse imaging of bird embryos and reveals the underestimated influence of differential tissue proliferation rates. We confirmed this prediction in quail embryos by showing that decreasing the rate of cell proliferation in the paraxial mesoderm affects long-term tissue dynamics and shaping of both the paraxial mesoderm and the neighboring neural tube. Overall, our work provides a new theoretical platform to consider the long-term consequences of tissue differential growth and mechanical interactions on morphogenesis.

2.
Development ; 144(23): 4462-4472, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28835474

RESUMO

Embryonic axis elongation is a complex multi-tissue morphogenetic process responsible for the formation of the posterior part of the amniote body. How movements and growth are coordinated between the different posterior tissues (e.g. neural tube, axial and paraxial mesoderm, lateral plate, ectoderm, endoderm) to drive axis morphogenesis remain largely unknown. Here, we use quail embryos to quantify cell behavior and tissue movements during elongation. We quantify the tissue-specific contribution to axis elongation using 3D volumetric techniques, then quantify tissue-specific parameters such as cell density and proliferation. To study cell behavior at a multi-tissue scale, we used high-resolution 4D imaging of transgenic quail embryos expressing fluorescent proteins. We developed specific tracking and image analysis techniques to analyze cell motion and compute tissue deformations in 4D. This analysis reveals extensive sliding between tissues during axis extension. Further quantification of tissue tectonics showed patterns of rotations, contractions and expansions, which are consistent with the multi-tissue behavior observed previously. Our approach defines a quantitative and multi-scale method to analyze the coordination between tissue behaviors during early vertebrate embryo morphogenetic events.


Assuntos
Coturnix/embriologia , Animais , Animais Geneticamente Modificados , Apoptose , Fenômenos Biomecânicos , Padronização Corporal/fisiologia , Contagem de Células , Movimento Celular/fisiologia , Proliferação de Células , Tamanho Celular , Coturnix/genética , Imageamento Tridimensional , Proteínas Luminescentes/genética , Morfogênese/fisiologia
3.
Surgery ; 161(4): 1016-1027, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28011012

RESUMO

BACKGROUND: In short bowel syndrome, luminal factors influence adaptation in which the truncated intestine increases villus lengths and crypt depths to increase nutrient absorption. No study has evaluated the effect of adaptation within the distal intestine after intestinal separation. We evaluated multiple conditions, including Igf1r inhibition, in proximal and distal segments after intestinal resection to evaluate the epithelial effects of the absence of mechanoluminal stimulation. METHODS: Short bowel syndrome was created in adult male zebrafish by performing a proximal stoma with ligation of the distal intestine. These zebrafish with short bowel syndrome were compared to sham-operated zebrafish. Groups were treated with the Igf1r inhibitor NVP-AEW541, DMSO, a vehicle control, or water for 2 weeks. Proximal and distal intestine were analyzed by hematoxylin and eosin for villus epithelial circumference, inner epithelial perimeter, and circumference. We evaluated BrdU+ cells, including costaining for ß-catenin, and the microbiome was evaluated for changes. Reverse transcription quantitative polymerase chain reaction was performed for ß-catenin, CyclinD1, Sox9a, Sox9b, and c-Myc. RESULTS: Proximal intestine demonstrated significantly increased adaptation compared to sham-operated proximal intestine, whereas the distal intestine showed no adaptation in the absence of luminal flow. Addition of the Igf1r inhibitor resulted in decreased adaption in the distal intestine but an increase in distal proliferative cells and proximal ß-catenin expression. While some proximal proliferative cells in short bowel syndrome colocalized ß-catenin and BrdU, the distal proliferative cells did not co-stain for ß-catenin. Sox9a increased in the distal limb after division but not after inhibition with the Igf1r inhibitor. There was no difference in alpha diversity or species richness of the microbiome between all groups. CONCLUSION: Luminal flow in conjunction with short bowel syndrome significantly increases intestinal adaption within the proximal intestine in which proliferative cells contain ß-catenin. Addition of an Igf1r inhibitor decreases adaptation in both proximal and distal limbs while increasing distal proliferative cells that do not colocalize ß-catenin. Igf1r inhibition abrogates the increase in distal Sox9a expression that otherwise occurs in short bowel syndrome. Mechanoluminal flow is an important stimulus for intestinal adaptation.


Assuntos
Intestino Delgado/efeitos dos fármacos , Intestino Delgado/cirurgia , Pirimidinas/antagonistas & inibidores , Pirróis/antagonistas & inibidores , Síndrome do Intestino Curto/patologia , Adaptação Fisiológica/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Biópsia por Agulha , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Pirimidinas/farmacologia , Pirróis/farmacologia , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Valores de Referência , Sensibilidade e Especificidade , Síndrome do Intestino Curto/tratamento farmacológico , Síndrome do Intestino Curto/cirurgia , Peixe-Zebra , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA