Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(11): 1879-1889, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872315

RESUMO

Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia. Analysis of hematopoietic stem cell progenitors in sCOVID-19 revealed transcriptional changes in antifungal immunity pathways and reprogramming of granulocyte myeloid progenitors (GMPs) for up to a year. Mice colonized with C. albicans patient isolates experienced increased lung neutrophilia and pulmonary NETosis during severe acute respiratory syndrome coronavirus-2 infection, which were partially resolved with antifungal treatment or by interleukin-6 receptor blockade. sCOVID-19 patients treated with tocilizumab experienced sustained reductions in C. albicans IgG antibodies titers and GMP transcriptional changes. These findings suggest that gut fungal pathobionts may contribute to immune activation during inflammatory diseases, offering potential mycobiota-immune therapeutic strategies for sCOVID-19 with prolonged symptoms.


Assuntos
COVID-19 , Micobioma , Humanos , Animais , Camundongos , Antifúngicos , Disbiose , Neutrófilos , Candida albicans , Imunoglobulina G
2.
J Virol ; 97(6): e0049323, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37255439

RESUMO

Influenza defective interfering (DI) viruses have long been considered promising antiviral candidates because of their ability to interfere with replication-competent viruses and induce antiviral immunity. However, the mechanisms underlying DI-mediated antiviral immunity have not been extensively explored. Here, we demonstrated the interferon (IFN)-independent protection conferred by the influenza DI virus against homologous virus infection in mice deficient in type I and III IFN signaling. We identified unique host signatures responding to DI coinfection by integrating transcriptional and posttranscriptional regulatory data. DI-treated mice exhibited reduced viral transcription, less intense inflammatory and innate immune responses, and primed multiciliated cell differentiation in their lungs at an early stage of infection, even in the absence of type I or III IFNs. This increased multiciliogenesis could also be detected at the protein level via the immunofluorescence staining of lung tissue from DI-treated mice. Overall, our study provides mechanistic insight into the protection mediated by DIs, implying a unifying theme involving inflammation and multiciliogenesis in maintaining respiratory homeostasis and revealing their IFN-independent antiviral activity. IMPORTANCE During replication, the influenza virus generates genetically defective viruses. These are found in natural infections as part of the virus population within the infected host. Some versions of these defective viruses are thought to have protective effects through their interference with replication-competent viruses and induction of antiviral immunity. To better determine the mechanisms underlying the protective effects of these defective interfering (DI) viruses, we tested a DI that we previously identified in vitro with mice. Mice that were infected with a mix of wild-type influenza and DI viruses had less intense inflammatory and innate immune responses than did mice that were infected with the wild-type virus only, even when type I or III interferons, which are cytokines that play a prominent role in defending the respiratory epithelial barrier, were absent. More interestingly, the DI-infected mice had primed multiciliated cell differentiation in their lungs, indicating the potential promotion of epithelial repair by DIs.


Assuntos
Diferenciação Celular , Vírus Defeituosos Interferentes , Infecções por Orthomyxoviridae , Animais , Camundongos , Interferons , Replicação Viral , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae
3.
Transpl Infect Dis ; 22(4): e13336, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32449254

RESUMO

BACKGROUND: Seasonal influenza causes significant morbidity and mortality in allogeneic stem cell transplant (SCT) recipients. In this population, influenza virus can replicate for prolonged periods, despite neuraminidase inhibitor treatment, leading to resistance and treatment failure. Baloxavir targets the influenza polymerase and may be an effective treatment option in these patients. METHODS: We used baloxavir to treat five allogeneic SCT recipients that were still symptomatic and shedding influenza virus after completing one or more treatment courses of oseltamivir and characterized the viral isolates before and during treatment. RESULTS: Two patients were infected with influenza A/H1pdm09 carrying a neuraminidase variant (H275Y) linked to oseltamivir resistance. Both these two patients were successfully treated with baloxavir. Of the three patients infected with wild-type influenza virus, two cleared the virus after baloxavir treatment, while the third patient developed the polymerase I38T variant linked to baloxavir resistance. CONCLUSIONS: Our data suggest that baloxavir treatment can be effective in treating neuraminidase inhibitor-resistant influenza in profoundly immunocompromised patients. Randomized clinical trials are needed to define the role of baloxavir alone and combined with oseltamivir for the treatment of influenza in SCT recipients and other immunocompromised populations.


Assuntos
Antivirais/uso terapêutico , Dibenzotiepinas/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Influenza Humana/tratamento farmacológico , Morfolinas/uso terapêutico , Oseltamivir/uso terapêutico , Piridonas/uso terapêutico , Triazinas/uso terapêutico , Idoso , Farmacorresistência Viral , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Hospedeiro Imunocomprometido , Masculino , Pessoa de Meia-Idade , Transplantados , Resultado do Tratamento , Eliminação de Partículas Virais/efeitos dos fármacos
4.
J Clin Microbiol ; 55(12): 3492-3501, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28978683

RESUMO

Influenza A and B viruses are the causative agents of annual influenza epidemics that can be severe, and influenza A viruses intermittently cause pandemics. Sequence information from influenza virus genomes is instrumental in determining mechanisms underpinning antigenic evolution and antiviral resistance. However, due to sequence diversity and the dynamics of influenza virus evolution, rapid and high-throughput sequencing of influenza viruses remains a challenge. We developed a single-reaction influenza A/B virus (FluA/B) multiplex reverse transcription-PCR (RT-PCR) method that amplifies the most critical genomic segments (hemagglutinin [HA], neuraminidase [NA], and matrix [M]) of seasonal influenza A and B viruses for next-generation sequencing, regardless of viral type, subtype, or lineage. Herein, we demonstrate that the strategy is highly sensitive and robust. The strategy was validated on thousands of seasonal influenza A and B virus-positive specimens using multiple next-generation sequencing platforms.


Assuntos
Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/classificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/virologia , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Monitoramento Epidemiológico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Vírus da Influenza A/genética , Vírus da Influenza B/genética , Epidemiologia Molecular/métodos
5.
Biol Blood Marrow Transplant ; 22(5): 965-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26904972

RESUMO

Parainfluenza virus (PIV) causes severe respiratory infections in hematopoietic stem cell transplant (HSCT) recipients. Currently, no effective therapies are available. DAS181 is a novel antiviral agent that inhibits attachment of PIV to respiratory cells, but clinical data on the use of DAS181 for PIV infection are limited to case reports. We report the clinical manifestations and outcomes of 16 HSCT recipients who received DAS181 daily for the treatment of PIV infection through a compassionate-use protocol or a single-arm clinical trial. Of the 16 patients (clinical trial: 9; compassionate use: 7), 13 were allogeneic HSCT recipients and 8 had graft-versus-host disease. PIV types were 3 (n = 7), 4 (n = 5), 1 (n = 3), and type 3 and 4 coinfection (n = 1). Fourteen patients had pneumonia. All patients presented with cough, 14 had dyspnea, 11 had hypoxia, and 8 had a fever. Patients received 5 to 10 days of treatment. Nine patients (56%) had a complete clinical response after DAS181 therapy and 4 (25%) had a partial response. The 3 patients without a clinical response had coinfections with other pathogens. Of the 7 patients with virologic and spirometric data, 5 had >1-log reduction in nasopharyngeal swab PIV viral load and 4 had improved forced expiratory volumes by the end of treatment. Three patients (19%) died within 30 days and 2 of these deaths were related to PIV infection. Our data suggest that DAS181 may be an effective therapy for PIV pneumonia in HSCT recipients. Randomized placebo-controlled trials are needed to better evaluate its efficacy.


Assuntos
Infecções por Paramyxoviridae/sangue , Infecções por Paramyxoviridae/tratamento farmacológico , Pneumonia Viral/sangue , Pneumonia Viral/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Respirovirus , Adulto , Idoso , Aloenxertos , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Paramyxoviridae/etiologia , Pneumonia Viral/etiologia , Carga Viral
6.
Glob Chang Biol ; 21(7): 2655-2660, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25580828

RESUMO

We refine the information available through the IPCC AR5 with regard to recent trends in global GHG emissions from agriculture, forestry and other land uses (AFOLU), including global emission updates to 2012. Using all three available AFOLU datasets employed for analysis in the IPCC AR5, rather than just one as done in the IPCC AR5 WGIII Summary for Policy Makers, our analyses point to a down-revision of global AFOLU shares of total anthropogenic emissions, while providing important additional information on subsectoral trends. Our findings confirm that the share of AFOLU emissions to the anthropogenic total declined over time. They indicate a decadal average of 28.7 ± 1.5% in the 1990s and 23.6 ± 2.1% in the 2000s and an annual value of 21.2 ± 1.5% in 2010. The IPCC AR5 had indicated a 24% share in 2010. In contrast to previous decades, when emissions from land use (land use, land use change and forestry, including deforestation) were significantly larger than those from agriculture (crop and livestock production), in 2010 agriculture was the larger component, contributing 11.2 ± 0.4% of total GHG emissions, compared to 10.0 ± 1.2% of the land use sector. Deforestation was responsible for only 8% of total anthropogenic emissions in 2010, compared to 12% in the 1990s. Since 2010, the last year assessed by the IPCC AR5, new FAO estimates indicate that land use emissions have remained stable, at about 4.8 Gt CO2 eq yr-1 in 2012. Emissions minus removals have also remained stable, at 3.2 Gt CO2 eq yr-1 in 2012. By contrast, agriculture emissions have continued to grow, at roughly 1% annually, and remained larger than the land use sector, reaching 5.4 Gt CO2 eq yr-1 in 2012. These results are useful to further inform the current climate policy debate on land use, suggesting that more efforts and resources should be directed to further explore options for mitigation in agriculture, much in line with the large efforts devoted to REDD+ in the past decade.

7.
Nat Commun ; 15(1): 7999, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294134

RESUMO

We investigated the impact of antiviral treatment on the emergence of SARS-CoV-2 resistance during persistent infections in immunocompromised patients (n = 15). All patients received remdesivir and some also received nirmatrelvir-ritonavir (n = 3) or therapeutic monoclonal antibodies (n = 4). Sequence analysis showed that nine patients carried viruses with mutations in the nsp12 (RNA dependent RNA polymerase), while four had viruses with nsp5 (3C protease) mutations. Infectious SARS-CoV-2 with a double mutation in nsp5 (T169I) and nsp12 (V792I) was recovered from respiratory secretions 77 days after initial COVID-19 diagnosis from a patient sequentially treated with nirmatrelvir-ritonavir and remdesivir. In vitro characterization confirmed its decreased sensitivity to remdesivir and nirmatrelvir, which was overcome by combined antiviral treatment. Studies in golden Syrian hamsters demonstrated efficient transmission to contact animals. This study documents the isolation of SARS-CoV-2 carrying resistance mutations to both nirmatrelvir and remdesivir from a patient and demonstrates its transmissibility in vivo.


Assuntos
Monofosfato de Adenosina , Alanina , Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Farmacorresistência Viral , Hospedeiro Imunocomprometido , Mutação , Ritonavir , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Animais , Alanina/análogos & derivados , Alanina/uso terapêutico , Alanina/farmacologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Monofosfato de Adenosina/farmacologia , Antivirais/uso terapêutico , Antivirais/farmacologia , Humanos , COVID-19/virologia , Feminino , Farmacorresistência Viral/genética , Masculino , Pessoa de Meia-Idade , Ritonavir/uso terapêutico , Ritonavir/farmacologia , Idoso , Mesocricetus , Adulto , Cricetinae , Leucina , Lactamas , Prolina , Nitrilas , RNA-Polimerase RNA-Dependente de Coronavírus
8.
medRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38946967

RESUMO

We investigated the impact of antiviral treatment on the emergence of SARS-CoV-2 resistance during persistent infections in immunocompromised patients (n=15). All patients received remdesivir and some also received nirmatrelvir-ritonavir or monoclonal antibodies. Sequence analysis showed that nine patients carried viruses with mutations in the nsp12 (RNA dependent RNA polymerase), while four had viruses with nsp5 (3C protease) mutations. Infectious SARS-CoV-2 with a double mutation in nsp5 (T169I) and nsp12 (V792I) was recovered from respiratory secretions 77 days after initial COVID-19 diagnosis from a patient treated with remdesivir and nirmatrelvir-ritonavir. In vitro characterization confirmed its decreased sensitivity to remdesivir and nirmatrelvir, which was overcome by combined antiviral treatment. Studies in golden Syrian hamsters demonstrated efficient transmission to contact animals. This study documents the isolation of SARS-CoV-2 carrying resistance mutations to both nirmatrelvir and remdesivir from a patient and demonstrates its transmissibility in vivo.

9.
Front Immunol ; 15: 1348041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318183

RESUMO

Background: Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to post-acute sequelae of SARS-CoV-2 (PASC) that can persist for weeks to years following initial viral infection. Clinical manifestations of PASC are heterogeneous and often involve multiple organs. While many hypotheses have been made on the mechanisms of PASC and its associated symptoms, the acute biological drivers of PASC are still unknown. Methods: We enrolled 494 patients with COVID-19 at their initial presentation to a hospital or clinic and followed them longitudinally to determine their development of PASC. From 341 patients, we conducted multi-omic profiling on peripheral blood samples collected shortly after study enrollment to investigate early immune signatures associated with the development of PASC. Results: During the first week of COVID-19, we observed a large number of differences in the immune profile of individuals who were hospitalized for COVID-19 compared to those individuals with COVID-19 who were not hospitalized. Differences between individuals who did or did not later develop PASC were, in comparison, more limited, but included significant differences in autoantibodies and in epigenetic and transcriptional signatures in double-negative 1 B cells, in particular. Conclusions: We found that early immune indicators of incident PASC were nuanced, with significant molecular signals manifesting predominantly in double-negative B cells, compared with the robust differences associated with hospitalization during acute COVID-19. The emerging acute differences in B cell phenotypes, especially in double-negative 1 B cells, in PASC patients highlight a potentially important role of these cells in the development of PASC.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Fatores Imunológicos , Autoanticorpos , Progressão da Doença
10.
bioRxiv ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37066223

RESUMO

Interferon ε (IFNε) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections (STIs). Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNε contributes to protection against ZIKV infection in vivo is unknown. Here, we show that IFNε plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNε was expressed not only by epithelial cells in the FRT, but also by certain immune and other cells at baseline or after exposure to viruses or specific TLR agonists. IFNε-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal, but not subcutaneous ZIKV infection. IFNε-deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNε protected Ifnε-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNε was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNε in mediating protection against transmission of ZIKV in the context of sexual contact.

11.
Front Med (Lausanne) ; 10: 1227883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908849

RESUMO

Background: The understanding of Post-acute sequelae of SARS-CoV-2 infection (PASC) can be improved by longitudinal assessment of symptoms encompassing the acute illness period. To gain insight into the various disease trajectories of PASC, we assessed symptom evolution and clinical factors associated with the development of PASC over 3 months, starting with the acute illness period. Methods: We conducted a prospective cohort study to identify parameters associated with PASC. We performed cluster and case control analyses of clinical data, including symptomatology collected over 3 months following infection. Results: We identified three phenotypic clusters associated with PASC that could be characterized as remittent, persistent, or incident based on the 3-month change in symptom number compared to study entry: remittent (median; min, max: -4; -17, 3), persistent (-2; -14, 7), or incident (4.5; -5, 17) (p = 0.041 remittent vs. persistent, p < 0.001 remittent vs. incident, p < 0.001 persistent vs. incident). Despite younger age and lower hospitalization rates, the incident phenotype had a greater number of symptoms (15; 8, 24) and a higher proportion of participants with PASC (63.2%) than the persistent (6; 2, 9 and 52.2%) or remittent clusters (1; 0, 6 and 18.7%). Systemic corticosteroid administration during acute infection was also associated with PASC at 3 months [OR (95% CI): 2.23 (1.14, 4.36)]. Conclusion: An incident disease phenotype characterized by symptoms that were absent during acute illness and the observed association with high dose steroids during acute illness have potential critical implications for preventing PASC.

12.
PNAS Nexus ; 2(11): pgad350, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37954158

RESUMO

Interferon ɛ (IFNɛ) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections. Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNɛ contributes to protection against ZIKV infection in vivo is unknown. In this study, we show that IFNɛ plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNɛ was expressed not only by epithelial cells in the FRT but also by immune and stromal cells at baseline or after exposure to viruses or specific Toll-like receptor (TLR) agonists. IFNɛ-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal but not subcutaneous ZIKV infection. IFNɛ deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNɛ protected Ifnɛ-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNɛ was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNɛ in mediating protection against the transmission of ZIKV in the context of sexual contact.

13.
Nat Commun ; 13(1): 4197, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864089

RESUMO

Metagenomic DNA sequencing is a powerful tool to characterize microbial communities but is sensitive to environmental DNA contamination, in particular when applied to samples with low microbial biomass. Here, we present Sample-Intrinsic microbial DNA Found by Tagging and sequencing (SIFT-seq) a metagenomic sequencing assay that is robust against environmental DNA contamination introduced during sample preparation. The core idea of SIFT-seq is to tag the DNA in the sample prior to DNA isolation and library preparation with a label that can be recorded by DNA sequencing. Any contaminating DNA that is introduced in the sample after tagging can then be bioinformatically identified and removed. We applied SIFT-seq to screen for infections from microorganisms with low burden in blood and urine, to identify COVID-19 co-infection, to characterize the urinary microbiome, and to identify microbial DNA signatures of sepsis and inflammatory bowel disease in blood.


Assuntos
COVID-19 , DNA Ambiental , DNA , Contaminação por DNA , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica , Análise de Sequência de DNA
14.
Cell Rep Med ; 3(2): 100522, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35233546

RESUMO

The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections.


Assuntos
COVID-19/genética , COVID-19/patologia , Pulmão/patologia , SARS-CoV-2 , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/metabolismo , COVID-19/virologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Regulação da Expressão Gênica , Humanos , Influenza Humana/genética , Influenza Humana/patologia , Influenza Humana/virologia , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Orthomyxoviridae , RNA-Seq/métodos , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/microbiologia , Síndrome do Desconforto Respiratório/patologia , Carga Viral
15.
bioRxiv ; 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33948589

RESUMO

The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 (ΔNS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of ΔNS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a ΔNS1 virus results in an immediate antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that ΔNS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on ΔNS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.

16.
Sci Rep ; 11(1): 22164, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773048

RESUMO

The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 (ΔNS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of ΔNS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a ΔNS1 virus results in an antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that ΔNS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on ΔNS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/uso terapêutico , Interferon Tipo I/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas Atenuadas/uso terapêutico , Proteínas não Estruturais Virais/imunologia , Imunidade Adaptativa , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , Galinhas , Deleção de Genes , Humanos , Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas não Estruturais Virais/genética
17.
Res Sq ; 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34401874

RESUMO

The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 (ΔNS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of ΔNS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a ΔNS1 virus results in an immediate antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that ΔNS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on ΔNS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.

18.
Front Immunol ; 12: 809937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095900

RESUMO

Deep understanding of the SARS-CoV-2 effects on host molecular pathways is paramount for the discovery of early biomarkers of outcome of coronavirus disease 2019 (COVID-19) and the identification of novel therapeutic targets. In that light, we generated metabolomic data from COVID-19 patient blood using high-throughput targeted nuclear magnetic resonance (NMR) spectroscopy and high-dimensional flow cytometry. We find considerable changes in serum metabolome composition of COVID-19 patients associated with disease severity, and response to tocilizumab treatment. We built a clinically annotated, biologically-interpretable space for precise time-resolved disease monitoring and characterize the temporal dynamics of metabolomic change along the clinical course of COVID-19 patients and in response to therapy. Finally, we leverage joint immuno-metabolic measurements to provide a novel approach for patient stratification and early prediction of severe disease. Our results show that high-dimensional metabolomic and joint immune-metabolic readouts provide rich information content for elucidation of the host's response to infection and empower discovery of novel metabolic-driven therapies, as well as precise and efficient clinical action.


Assuntos
Biomarcadores/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , Metaboloma/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Fenômenos Bioquímicos/imunologia , Biomarcadores/sangue , COVID-19/sangue , Feminino , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade
19.
bioRxiv ; 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34845444

RESUMO

Metagenomic DNA sequencing is a powerful tool to characterize microbial communities but is sensitive to environmental DNA contamination, in particular when applied to samples with low microbial biomass. Here, we present contamination-free metagenomic DNA sequencing (Coffee-seq), a metagenomic sequencing assay that is robust against environmental contamination. The core idea of Coffee-seq is to tag the DNA in the sample prior to DNA isolation and library preparation with a label that can be recorded by DNA sequencing. Any contaminating DNA that is introduced in the sample after tagging can then be bioinformatically identified and removed. We applied Coffee-seq to screen for infections from microorganisms with low burden in blood and urine, to identify COVID-19 co-infection, to characterize the urinary microbiome, and to identify microbial DNA signatures of inflammatory bowel disease in blood.

20.
medRxiv ; 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33851193

RESUMO

IMPORTANCE: As the United States continues to accumulate COVID-19 cases and deaths, and disparities persist, defining the impact of risk factors for poor outcomes across patient groups is imperative. OBJECTIVE: Our objective is to use real-world healthcare data to quantify the impact of demographic, clinical, and social determinants associated with adverse COVID-19 outcomes, to identify high-risk scenarios and dynamics of risk among racial and ethnic groups. DESIGN: A retrospective cohort of COVID-19 patients diagnosed between March 1 and August 20, 2020. Fully adjusted logistical regression models for hospitalization, severe disease and mortality outcomes across 1-the entire cohort and 2- within self-reported race/ethnicity groups. SETTING: Three sites of the NewYork-Presbyterian health care system serving all boroughs of New York City. Data was obtained through automated data abstraction from electronic medical records. PARTICIPANTS: During the study timeframe, 110,498 individuals were tested for SARS-CoV-2 in the NewYork-Presbyterian health care system; 11,930 patients were confirmed for COVID-19 by RT-PCR or covid-19 clinical diagnosis. MAIN OUTCOMES AND MEASURES: The predictors of interest were patient race/ethnicity, and covariates included demographics, comorbidities, and census tract neighborhood socio-economic status. The outcomes of interest were COVID-19 hospitalization, severe disease, and death. RESULTS: Of confirmed COVID-19 patients, 4,895 were hospitalized, 1,070 developed severe disease and 1,654 suffered COVID-19 related death. Clinical factors had stronger impacts than social determinants and several showed race-group specificities, which varied among outcomes. The most significant factors in our all-patients models included: age over 80 (OR=5.78, p= 2.29x10-24) and hypertension (OR=1.89, p=1.26x10-10) having the highest impact on hospitalization, while Type 2 Diabetes was associated with all three outcomes (hospitalization: OR=1.48, p=1.39x10-04; severe disease: OR=1.46, p=4.47x10-09; mortality: OR=1.27, p=0.001). In race-specific models, COPD increased risk of hospitalization only in Non-Hispanics (NH)-Whites (OR=2.70, p=0.009). Obesity (BMI 30+) showed race-specific risk with severe disease NH-Whites (OR=1.48, p=0.038) and NH-Blacks (OR=1.77, p=0.025). For mortality, Cancer was the only risk factor in Hispanics (OR=1.97, p=0.043), and heart failure was only a risk in NH-Asians (OR=2.62, p=0.001). CONCLUSIONS AND RELEVANCE: Comorbidities were more influential on COVID-19 outcomes than social determinants, suggesting clinical factors are more predictive of adverse trajectory than social factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA