Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(4): e1010719, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37058541

RESUMO

The computational principles adopted by the hippocampus in associative memory (AM) tasks have been one of the most studied topics in computational and theoretical neuroscience. Recent theories suggested that AM and the predictive activities of the hippocampus could be described within a unitary account, and that predictive coding underlies the computations supporting AM in the hippocampus. Following this theory, a computational model based on classical hierarchical predictive networks was proposed and was shown to perform well in various AM tasks. However, this fully hierarchical model did not incorporate recurrent connections, an architectural component of the CA3 region of the hippocampus that is crucial for AM. This makes the structure of the model inconsistent with the known connectivity of CA3 and classical recurrent models such as Hopfield Networks, which learn the covariance of inputs through their recurrent connections to perform AM. Earlier PC models that learn the covariance information of inputs explicitly via recurrent connections seem to be a solution to these issues. Here, we show that although these models can perform AM, they do it in an implausible and numerically unstable way. Instead, we propose alternatives to these earlier covariance-learning predictive coding networks, which learn the covariance information implicitly and plausibly, and can use dendritic structures to encode prediction errors. We show analytically that our proposed models are perfectly equivalent to the earlier predictive coding model learning covariance explicitly, and encounter no numerical issues when performing AM tasks in practice. We further show that our models can be combined with hierarchical predictive coding networks to model the hippocampo-neocortical interactions. Our models provide a biologically plausible approach to modelling the hippocampal network, pointing to a potential computational mechanism during hippocampal memory formation and recall, which employs both predictive coding and covariance learning based on the recurrent network structure of the hippocampus.


Assuntos
Hipocampo , Aprendizagem , Rememoração Mental , Condicionamento Clássico , Modelos Neurológicos
2.
Nat Neurosci ; 27(2): 348-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172438

RESUMO

For both humans and machines, the essence of learning is to pinpoint which components in its information processing pipeline are responsible for an error in its output, a challenge that is known as 'credit assignment'. It has long been assumed that credit assignment is best solved by backpropagation, which is also the foundation of modern machine learning. Here, we set out a fundamentally different principle on credit assignment called 'prospective configuration'. In prospective configuration, the network first infers the pattern of neural activity that should result from learning, and then the synaptic weights are modified to consolidate the change in neural activity. We demonstrate that this distinct mechanism, in contrast to backpropagation, (1) underlies learning in a well-established family of models of cortical circuits, (2) enables learning that is more efficient and effective in many contexts faced by biological organisms and (3) reproduces surprising patterns of neural activity and behavior observed in diverse human and rat learning experiments.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Humanos , Ratos , Animais , Estudos Prospectivos , Plasticidade Neuronal
3.
Proc Mach Learn Res ; 162: 15561-15583, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36751405

RESUMO

A large number of neural network models of associative memory have been proposed in the literature. These include the classical Hopfield networks (HNs), sparse distributed memories (SDMs), and more recently the modern continuous Hopfield networks (MCHNs), which possess close links with self-attention in machine learning. In this paper, we propose a general framework for understanding the operation of such memory networks as a sequence of three operations: similarity, separation, and projection. We derive all these memory models as instances of our general framework with differing similarity and separation functions. We extend the mathematical framework of Krotov & Hopfield (2020) to express general associative memory models using neural network dynamics with local computation, and derive a general energy function that is a Lyapunov function of the dynamics. Finally, using our framework, we empirically investigate the capacity of using different similarity functions for these associative memory models, beyond the dot product similarity measure, and demonstrate empirically that Euclidean or Manhattan distance similarity metrics perform substantially better in practice on many tasks, enabling a more robust retrieval and higher memory capacity than existing models.

4.
Proc AAAI Conf Artif Intell ; 36(7): 8150-8158, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37205168

RESUMO

Deep learning has redefined AI thanks to the rise of artificial neural networks, which are inspired by neuronal networks in the brain. Through the years, these interactions between AI and neuroscience have brought immense benefits to both fields, allowing neural networks to be used in a plethora of applications. Neural networks use an efficient implementation of reverse differentiation, called backpropagation (BP). This algorithm, however, is often criticized for its biological implausibility (e.g., lack of local update rules for the parameters). Therefore, biologically plausible learning methods that rely on predictive coding (PC), a framework for describing information processing in the brain, are increasingly studied. Recent works prove that these methods can approximate BP up to a certain margin on multilayer perceptrons (MLPs), and asymptotically on any other complex model, and that zerodivergence inference learning (Z-IL), a variant of PC, is able to exactly implement BP on MLPs. However, the recent literature shows also that there is no biologically plausible method yet that can exactly replicate the weight update of BP on complex models. To fill this gap, in this paper, we generalize (PC and) Z-IL by directly defining it on computational graphs, and show that it can perform exact reverse differentiation. What results is the first PC (and so biologically plausible) algorithm that is equivalent to BP in the way of updating parameters on any neural network, providing a bridge between the interdisciplinary research of neuroscience and deep learning. Furthermore, the above results in particular also immediately provide a novel local and parallel implementation of BP.

5.
Adv Neural Inf Process Syst ; 35: 38232-38244, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37090087

RESUMO

Training with backpropagation (BP) in standard deep learning consists of two main steps: a forward pass that maps a data point to its prediction, and a backward pass that propagates the error of this prediction back through the network. This process is highly effective when the goal is to minimize a specific objective function. However, it does not allow training on networks with cyclic or backward connections. This is an obstacle to reaching brain-like capabilities, as the highly complex heterarchical structure of the neural connections in the neocortex are potentially fundamental for its effectiveness. In this paper, we show how predictive coding (PC), a theory of information processing in the cortex, can be used to perform inference and learning on arbitrary graph topologies. We experimentally show how this formulation, called PC graphs, can be used to flexibly perform different tasks with the same network by simply stimulating specific neurons. This enables the model to be queried on stimuli with different structures, such as partial images, images with labels, or images without labels. We conclude by investigating how the topology of the graph influences the final performance, and comparing against simple baselines trained with BP.

6.
Adv Neural Inf Process Syst ; 34: 3874-3886, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35664437

RESUMO

Associative memories in the brain receive and store patterns of activity registered by the sensory neurons, and are able to retrieve them when necessary. Due to their importance in human intelligence, computational models of associative memories have been developed for several decades now. In this paper, we present a novel neural model for realizing associative memories, which is based on a hierarchical generative network that receives external stimuli via sensory neurons. It is trained using predictive coding, an error-based learning algorithm inspired by information processing in the cortex. To test the model's capabilities, we perform multiple retrieval experiments from both corrupted and incomplete data points. In an extensive comparison, we show that this new model outperforms in retrieval accuracy and robustness popular associative memory models, such as autoencoders trained via backpropagation, and modern Hopfield networks. In particular, in completing partial data points, our model achieves remarkable results on natural image datasets, such as ImageNet, with a surprisingly high accuracy, even when only a tiny fraction of pixels of the original images is presented. Our model provides a plausible framework to study learning and retrieval of memories in the brain, as it closely mimics the behavior of the hippocampus as a memory index and generative model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA