Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
CA Cancer J Clin ; 72(1): 34-56, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792808

RESUMO

Radiation therapy (RT) continues to play an important role in the treatment of cancer. Adaptive RT (ART) is a novel method through which RT treatments are evolving. With the ART approach, computed tomography or magnetic resonance (MR) images are obtained as part of the treatment delivery process. This enables the adaptation of the irradiated volume to account for changes in organ and/or tumor position, movement, size, or shape that may occur over the course of treatment. The advantages and challenges of ART maybe somewhat abstract to oncologists and clinicians outside of the specialty of radiation oncology. ART is positioned to affect many different types of cancer. There is a wide spectrum of hypothesized benefits, from small toxicity improvements to meaningful gains in overall survival. The use and application of this novel technology should be understood by the oncologic community at large, such that it can be appropriately contextualized within the landscape of cancer therapies. Likewise, the need to test these advances is pressing. MR-guided ART (MRgART) is an emerging, extended modality of ART that expands upon and further advances the capabilities of ART. MRgART presents unique opportunities to iteratively improve adaptive image guidance. However, although the MRgART adaptive process advances ART to previously unattained levels, it can be more expensive, time-consuming, and complex. In this review, the authors present an overview for clinicians describing the process of ART and specifically MRgART.


Assuntos
Imagem por Ressonância Magnética Intervencionista/métodos , Neoplasias/radioterapia , Aceleradores de Partículas , Radioterapia (Especialidade)/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , História do Século XX , História do Século XXI , Humanos , Imagem por Ressonância Magnética Intervencionista/história , Imagem por Ressonância Magnética Intervencionista/instrumentação , Imagem por Ressonância Magnética Intervencionista/tendências , Neoplasias/diagnóstico por imagem , Radioterapia (Especialidade)/história , Radioterapia (Especialidade)/instrumentação , Radioterapia (Especialidade)/tendências , Planejamento da Radioterapia Assistida por Computador/história , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/tendências
2.
Proc Natl Acad Sci U S A ; 117(36): 22378-22389, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839325

RESUMO

Hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging (MRSI) is a noninvasive metabolic-imaging modality that probes carbon flux in tissues and infers the state of metabolic reprograming in tumors. Prevailing models attribute elevated hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in aggressive tumors to enhanced glycolytic flux and lactate dehydrogenase A (LDHA) activity (Warburg effect). By contrast, we find by cross-sectional analysis using genetic and pharmacological tools in mechanistic studies applied to well-defined genetically engineered cell lines and tumors that initial hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates as well as global conversion were highly dependent on and critically rate-limited by the transmembrane influx of [1-13C]pyruvate mediated predominately by monocarboxylate transporter-1 (MCT1). Specifically, in a cell-encapsulated alginate bead model, induced short hairpin (shRNA) knockdown or overexpression of MCT1 quantitatively inhibited or enhanced, respectively, unidirectional pyruvate influxes and [1-13C]pyruvate-to-[1-13C]lactate conversion rates, independent of glycolysis or LDHA activity. Similarly, in tumor models in vivo, hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion was highly dependent on and critically rate-limited by the induced transmembrane influx of [1-13C]pyruvate mediated by MCT1. Thus, hyperpolarized [1-13C]pyruvate MRSI measures primarily MCT1-mediated [1-13C]pyruvate transmembrane influx in vivo, not glycolytic flux or LDHA activity, driving a reinterpretation of this maturing new technology during clinical translation. Indeed, Kaplan-Meier survival analysis for patients with pancreatic, renal, lung, and cervical cancers showed that high-level expression of MCT1 correlated with poor overall survival, and only in selected tumors, coincident with LDHA expression. Thus, hyperpolarized [1-13C]pyruvate MRSI provides a noninvasive functional assessment primarily of MCT1 as a clinical biomarker in relevant patient populations.


Assuntos
Isótopos de Carbono/metabolismo , Membrana Celular/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo , Simportadores/metabolismo , Animais , Isótopos de Carbono/análise , Isótopos de Carbono/química , Linhagem Celular Tumoral , Membrana Celular/química , Feminino , Humanos , Ácido Láctico/análise , Ácido Láctico/química , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Ácido Pirúvico/análise , Ácido Pirúvico/química
3.
J Allergy Clin Immunol ; 143(1): 346-358.e6, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30096390

RESUMO

BACKGROUND: The mechanism by which natural killer (NK) cell education results in licensed NK cells with heightened effector function against missing self-targets is not known. OBJECTIVE: We sought to identify potential mechanisms of enhanced function in licensed human NK cells. METHODS: We used expanded human NK cells from killer immunoglobulin-like receptor (KIR)/HLA-genotyped donors sorted for single-KIR+ cells to generate pure populations of licensed and unlicensed NK cells. We performed proteomic and gene expression analysis of these cells before and after receptor cross-linking and performed functional and metabolic analysis before and after interference with selected metabolic pathways. We verified key findings using freshly isolated and sorted NK cells from peripheral blood. RESULTS: We confirmed that licensed human NK cells are greater in number in peripheral blood and proliferate more in vitro than unlicensed NK cells. Using high-throughput protein analysis, we found that unstimulated licensed NK cells have increased expression of the glycolytic enzyme pyruvate kinase muscle isozyme M2 and after KIR cross-linking have increased phosphorylation of the metabolic modulators p38-α and 5' adenosine monophosphate-activated protein kinase α. After cytokine expansion and activation, unlicensed NK cells depended solely on mitochondrial respiration for cytolytic function, whereas licensed NK cells demonstrated metabolic reprogramming toward glycolysis and mitochondrial-dependent glutaminolysis, leading to accumulation of glycolytic metabolites and depletion of glutamate. As such, blocking both glycolysis and mitochondrial-dependent respiration was required to suppress the cytotoxicity of licensed NK cells. CONCLUSIONS: Collectively, our data support an arming model of education in which enhanced glycolysis in licensed NK cells supports proliferative and cytotoxic capacity.


Assuntos
Glicólise/imunologia , Ativação Linfocitária/imunologia , Modelos Imunológicos , Regulação da Expressão Gênica/imunologia , Humanos , Proteômica , Receptores KIR/imunologia
4.
J Proteome Res ; 18(7): 2826-2834, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31120258

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer that progresses without any symptom, and oftentimes, it is detected at an advanced stage. The lack of prior symptoms and effective treatments have created a knowledge gap in the management of this lethal disease. This issue can be addressed by developing novel noninvasive imaging-based biomarkers in PDAC. We explored in vivo hyperpolarized (HP) 13C MRS of pyruvate to lactate conversion and ex vivo 1H NMR spectroscopy in a panel of well-annotated patient-derived PDAC xenograft (PDXs) model and investigated the correlation between aberrant glycolytic metabolism and aggressiveness of the tumor. Real-time metabolic imaging data demonstrate the immediate intracellular conversion of HP 13C pyruvate to lactate after intravenous injection interrogating upregulated lactate dehydrogenase (LDH) activity in aggressive PDXs. Total ex vivo lactate measurement by 1H NMR spectroscopy showed a direct correlation with in vivo dynamic pyruvate-to-lactate conversion and demonstrated the potential of dynamic metabolic flux as a biomarker of total lactate concentration and aggressiveness of the tumor. Furthermore, the metabolite concentrations were very distinct among all four tumor types analyzed in this study. Overexpression of LDH-A and hypoxia-inducible factor (HIF-1α) plays a significant role in the conversion kinetics of HP pyruvate-to-lactate in tumors. Collectively, these data identified aberrant metabolic characteristics of pancreatic cancer PDXs and could potentially delineate metabolic targets for therapeutic intervention. Metabolic imaging with HP pyruvate and NMR metabolomics may enable identification and classification of aggressive subtypes of patient-derived xenografts. Translation of this real-time metabolic technique to the clinic may have the potential to improve the management of patients at high risk of developing pancreatic diseases.


Assuntos
Biomarcadores Tumorais/metabolismo , Imageamento por Ressonância Magnética/métodos , Neoplasias Pancreáticas/diagnóstico , Animais , Carcinoma Ductal Pancreático , Glicólise , Xenoenxertos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Pancreáticas/metabolismo , Ácido Pirúvico/metabolismo
5.
Adv Exp Med Biol ; 1210: 185-237, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31900911

RESUMO

Cancers must alter their metabolism to satisfy the increased demand for energy and to produce building blocks that are required to create a rapidly growing tumor. Further, for cancer cells to thrive, they must also adapt to an often changing tumor microenvironment, which can present new metabolic challenges (ex. hypoxia) that are unfavorable for most other cells. As such, altered metabolism is now considered an emerging hallmark of cancer. Like many other malignancies, the metabolism of prostate cancer is considerably different compared to matched benign tissue. However, prostate cancers exhibit distinct metabolic characteristics that set them apart from many other tumor types. In this chapter, we will describe the known alterations in prostate cancer metabolism that occur during initial tumorigenesis and throughout disease progression. In addition, we will highlight upstream regulators that control these metabolic changes. Finally, we will discuss how this new knowledge is being leveraged to improve patient care through the development of novel biomarkers and metabolically targeted therapies.


Assuntos
Metabolismo Energético , Neoplasias da Próstata/metabolismo , Hipóxia Celular , Humanos , Masculino , Neoplasias da Próstata/terapia , Microambiente Tumoral
6.
Metabolites ; 14(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39195544

RESUMO

Glioblastoma (GBM) is a malignant Grade VI cancer type with a median survival duration of only 8-16 months. Earlier detection of GBM could enable more effective treatment. Hyperpolarized magnetic resonance spectroscopy (HPMRS) could detect GBM earlier than conventional anatomical MRI in glioblastoma murine models. We further investigated whether artificial intelligence (A.I.) could detect GBM earlier than HPMRS. We developed a deep learning model that combines multiple modalities of cancer data to predict tumor progression, assess treatment effects, and to reconstruct in vivo metabolomic information from ex vivo data. Our model can detect GBM progression two weeks earlier than conventional MRIs and a week earlier than HPMRS alone. Our model accurately predicted in vivo biomarkers from HPMRS, and the results inferred biological relevance. Additionally, the model showed potential for examining treatment effects. Our model successfully detected tumor progression two weeks earlier than conventional MRIs and accurately predicted in vivo biomarkers using ex vivo information such as conventional MRIs, HPMRS, and tumor size data. The accuracy of these predictions is consistent with biological relevance.

7.
Phys Imaging Radiat Oncol ; 29: 100524, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38192414

RESUMO

While current MR-Linac (MRL) treatment workflows utilize a large table overlay during CT simulation to convert indexing between the two machines, we developed a look-up-table (LUT) as an alternative approach. After populating the LUT, index conversion factors were verified at three separate table locations. The resultant root-mean-square isocenter shifts on the MRL were 0.04/0.08 cm, 0.08/0.07 cm, and 0.09/0.08 cm with/without using the table overlay during simulation in the lateral, longitudinal, and vertical directions, respectively, which is within registration tolerance. Clinical implementation of the LUT has resulted in a more efficient MRL treatment workflow while maintaining accurate patient setup.

8.
medRxiv ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39252894

RESUMO

Objective: The purpose of this study was to investigate the technical feasibility of integrating the quantitative maps available from SyntheticMR into the head and neck adaptive radiation oncology workflow. While SyntheticMR has been investigated for diagnostic applications, no studies have investigated its feasibility and potential for MR-Simulation or MR-Linac workflow. Demonstrating the feasibility of using this technique will facilitate rapid quantitative biomarker extraction which can be leveraged to guide adaptive radiation therapy decision making. Approach: Two phantoms, two healthy volunteers, and one patient were scanned using SyntheticMR on the MR-Simulation and MR-Linac devices with scan times between four to six minutes. Images in phantoms and volunteers were conducted in a test/retest protocol. The correlation between measured and reference quantitative T1, T2, and PD values were determined across clinical ranges in the phantom. Distortion was also studied. Contours of head and neck organs-at-risk (OAR) were drawn and applied to extract T1, T2, and PD. These values were plotted against each other, clusters were computed, and their separability significance was determined to evaluate SyntheticMR for differentiating tumor and normal tissue. Main Results: The Lin's Concordance Correlation Coefficient between the measured and phantom reference values was above 0.98 for both the MR-Sim and MR-Linac. No significant levels of distortion were measured. The mean bias between the measured and phantom reference values across repeated scans was below 4% for T1, 7% for T2, and 4% for PD for both the MR-Sim and MR-Linac. For T1 vs. T2 and T1 vs. PD, the GTV contour exhibited perfect purity against neighboring OARs while being 0.7 for T2 vs. PD. All cluster significance levels between the GTV and the nearest OAR, the tongue, using the SigClust method was p < 0.001. Significance: The technical feasibility of SyntheticMR was confirmed. Application of this technique to the head and neck adaptive radiation therapy workflow can enrich the current quantitative biomarker landscape.

9.
Int J Radiat Oncol Biol Phys ; 119(5): 1569-1578, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38462018

RESUMO

PURPOSE: Given the limitations of extant models for normal tissue complication probability estimation for osteoradionecrosis (ORN) of the mandible, the purpose of this study was to enrich statistical inference by exploiting structural properties of data and provide a clinically reliable model for ORN risk evaluation through an unsupervised-learning analysis that incorporates the whole radiation dose distribution on the mandible. METHODS AND MATERIALS: The analysis was conducted on retrospective data of 1259 patients with head and neck cancer treated at The University of Texas MD Anderson Cancer Center between 2005 and 2015. During a minimum 12-month posttherapy follow-up period, 173 patients in this cohort (13.7%) developed ORN (grades I to IV). The (structural) clusters of mandibular dose-volume histograms (DVHs) for these patients were identified using the K-means clustering method. A soft-margin support vector machine was used to determine the cluster borders and partition the dose-volume space. The risk of ORN for each dose-volume region was calculated based on incidence rates and other clinical risk factors. RESULTS: The K-means clustering method identified 6 clusters among the DVHs. Based on the first 5 clusters, the dose-volume space was partitioned by the soft-margin support vector machine into distinct regions with different risk indices. The sixth cluster entirely overlapped with the others; the region of this cluster was determined by its envelopes. For each region, the ORN incidence rate per preradiation dental extraction status (a statistically significant, nondose related risk factor for ORN) was reported as the corresponding risk index. CONCLUSIONS: This study presents an unsupervised-learning analysis of a large-scale data set to evaluate the risk of mandibular ORN among patients with head and neck cancer. The results provide a visual risk-assessment tool for ORN (based on the whole DVH and preradiation dental extraction status) as well as a range of constraints for dose optimization under different risk levels.


Assuntos
Neoplasias de Cabeça e Pescoço , Mandíbula , Osteorradionecrose , Aprendizado de Máquina não Supervisionado , Humanos , Osteorradionecrose/etiologia , Neoplasias de Cabeça e Pescoço/radioterapia , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Mandíbula/efeitos da radiação , Medição de Risco , Idoso , Dosagem Radioterapêutica , Análise por Conglomerados , Probabilidade , Órgãos em Risco/efeitos da radiação , Adulto , Doenças Mandibulares/etiologia , Máquina de Vetores de Suporte
10.
Med Phys ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167028

RESUMO

Measurement of static magnetic field (B0) homogeneity is an essential component of routine MRI system evaluation. This report summarizes the work of AAPM Task Group (TG) 325 on vendor-specific methods of B0 homogeneity measurement and evaluation. TG 325 was charged with producing a set of detailed, step-by-step instructions to implement B0 homogeneity measurement methods discussed in the American College of Radiology (ACR) MRI Quality Control Manual using specific makes and models of MRI scanners. The TG produced such instructions for as many approaches as was relevant and practical on six currently available vendor platforms including details of software/tools, settings, phantoms, and other experimental details needed for a reproducible protocol. Because edits to these instructions may need to be made as vendors enter and exit the market and change available tools, interfaces, and access levels over time, the step-by-step instructions are published as a living document on the AAPM website. This summary document provides an introduction to B0 homogeneity testing in MRI and several of the common methods for its measurement and evaluation. A living document on the AAPM website provides vendor-specific step-by-step instructions for performing these tests to facilitate accurate and reproducible B0 homogeneity evaluation on a routine basis.

11.
Sci Data ; 11(1): 487, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734679

RESUMO

Radiation therapy (RT) is a crucial treatment for head and neck squamous cell carcinoma (HNSCC); however, it can have adverse effects on patients' long-term function and quality of life. Biomarkers that can predict tumor response to RT are being explored to personalize treatment and improve outcomes. While tissue and blood biomarkers have limitations, imaging biomarkers derived from magnetic resonance imaging (MRI) offer detailed information. The integration of MRI and a linear accelerator in the MR-Linac system allows for MR-guided radiation therapy (MRgRT), offering precise visualization and treatment delivery. This data descriptor offers a valuable repository for weekly intra-treatment diffusion-weighted imaging (DWI) data obtained from head and neck cancer patients. By analyzing the sequential DWI changes and their correlation with treatment response, as well as oncological and survival outcomes, the study provides valuable insights into the clinical implications of DWI in HNSCC.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias de Cabeça e Pescoço , Humanos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia Guiada por Imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Aceleradores de Partículas
12.
Clin Transl Radiat Oncol ; 46: 100760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38510980

RESUMO

Purpose: MR-guided radiotherapy (MRgRT) has the advantage of utilizing high soft tissue contrast imaging to track daily changes in target and critical organs throughout the entire radiation treatment course. Head and neck (HN) stereotactic body radiation therapy (SBRT) has been increasingly used to treat localized lesions within a shorter timeframe. The purpose of this study is to examine the dosimetric difference between the step-and-shot intensity modulated radiation therapy (IMRT) plans on Elekta Unity and our clinical volumetric modulated arc therapy (VMAT) plans on Varian TrueBeam for HN SBRT. Method: Fourteen patients treated on TrueBeam sTx with VMAT treatment plans were re-planned in the Monaco treatment planning system for Elekta Unity MR-Linac (MRL). The plan qualities, including target coverage, conformity, homogeneity, nearby critical organ doses, gradient index and low dose bath volume, were compared between VMAT and Monaco IMRT plans. Additionally, we evaluated the Unity adaptive plans of adapt-to-position (ATP) and adapt-to-shape (ATS) workflows using simulated setup errors for five patients and assessed the outcomes of our treated patients. Results: Monaco IMRT plans achieved comparable results to VMAT plans in terms of target coverage, uniformity and homogeneity, with slightly higher target maximum and mean doses. The critical organ doses in Monaco IMRT plans all met clinical goals; however, the mean doses and low dose bath volumes were higher than in VMAT plans. The adaptive plans demonstrated that the ATP workflow may result in degraded target coverage and OAR doses for HN SBRT, while the ATS workflow can maintain the plan quality. Conclusion: The use of Monaco treatment planning and online adaptation can achieve dosimetric results comparable to VMAT plans, with the additional benefits of real-time tracking of target volume and nearby critical structures. This offers the potential to treat aggressive and variable tumors in HN SBRT and improve local control and treatment toxicity.

13.
medRxiv ; 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37645931

RESUMO

Radiation therapy (RT) is a crucial treatment for head and neck squamous cell carcinoma (HNSCC), however it can have adverse effects on patients' long-term function and quality of life. Biomarkers that can predict tumor response to RT are being explored to personalize treatment and improve outcomes. While tissue and blood biomarkers have limitations, imaging biomarkers derived from magnetic resonance imaging (MRI) offer detailed information. The integration of MRI and a linear accelerator in the MR-Linac system allows for MR-guided radiation therapy (MRgRT), offering precise visualization and treatment delivery. This data descriptor offers a valuable repository for weekly intra-treatment diffusion-weighted imaging (DWI) data obtained from head and neck cancer patients. By analyzing the sequential DWI changes and their correlation with treatment response, as well as oncological and survival outcomes, the study provides valuable insights into the clinical implications of DWI in HNSCC. [Table: see text].

14.
Radiother Oncol ; 183: 109641, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990394

RESUMO

PURPOSE: To determine DWI parameters associated with tumor response and oncologic outcomes in head and neck (HNC) patients treated with radiotherapy (RT). METHODS: HNC patients in a prospective study were included. Patients had MRIs pre-, mid-, and post-RT completion. We used T2-weighted sequences for tumor segmentation which were co-registered to respective DWIs for extraction of apparent diffusion coefficient (ADC) measurements. Treatment response was assessed at mid- and post-RT and was defined as: complete response (CR) vs. non-complete response (non-CR). The Mann-Whitney U test was used to compare ADC between CR and non-CR. Recursive partitioning analysis (RPA) was performed to identify ADC threshold associated with relapse. Cox proportional hazards models were done for clinical vs. clinical and imaging parameters and internal validation was done using bootstrapping technique. RESULTS: Eighty-one patients were included. Median follow-up was 31 months. For patients with post-RT CR, there was a significant increase in mean ADC at mid-RT compared to baseline ((1.8 ± 0.29) × 10-3 mm2/s vs. (1.37 ± 0.22) × 10-3 mm2/s, p < 0.0001), while patients with non-CR had no significant increase (p > 0.05). RPA identified GTV-P delta (Δ)ADCmean < 7% at mid-RT as the most significant parameter associated with worse LC and RFS (p = 0.01). Uni- and multi-variable analysis showed that GTV-P ΔADCmean at mid-RT ≥ 7% was significantly associated with better LC and RFS. The addition of ΔADCmean significantly improved the c-indices of LC and RFS models compared with standard clinical variables (0.85 vs. 0.77 and 0.74 vs. 0.68 for LC and RFS, respectively, p < 0.0001 for both). CONCLUSION: ΔADCmean at mid-RT is a strong predictor of oncologic outcomes in HNC. Patients with no significant increase of primary tumor ADC at mid-RT are at high risk of disease relapse.


Assuntos
Neoplasias de Cabeça e Pescoço , Recidiva Local de Neoplasia , Humanos , Estudos Prospectivos , Recidiva Local de Neoplasia/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Imageamento por Ressonância Magnética , Biomarcadores
15.
medRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034700

RESUMO

Purpose: Given the limitations of extant models for normal tissue complication probability estimation for osteoradionecrosis (ORN) of the mandible, the purpose of this study was to enrich statistical inference by exploiting structural properties of data and provide a clinically reliable model for ORN risk evaluation through an unsupervised-learning analysis. Materials and Methods: The analysis was conducted on retrospective data of 1,259 head and neck cancer (HNC) patients treated at the University of Texas MD Anderson Cancer Center between 2005 and 2015. The (structural) clusters of mandibular dose-volume histograms (DVHs) were identified through the K-means clustering method. A soft-margin support vector machine (SVM) was used to determine the cluster borders and partition the dose-volume space. The risk of ORN for each dose-volume region was calculated based on the clinical risk factors and incidence rates. Results: The K-means clustering method identified six clusters among the DVHs. Based on the first five clusters, the dose-volume space was partitioned almost perfectly by the soft-margin SVM into distinct regions with different risk indices. The sixth cluster overlapped the others entirely; the region of this cluster was determined by its envelops. These regions and the associated risk indices provide a range of constraints for dose optimization under different risk levels. Conclusion: This study presents an unsupervised-learning analysis of a large-scale data set to evaluate the risk of mandibular ORN among HNC patients. The results provide a visual risk-assessment tool (based on the whole DVH) and a spectrum of dose constraints for radiation planning.

16.
Med Phys ; 50(4): 2089-2099, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36519973

RESUMO

BACKGROUND/PURPOSE: Adequate image registration of anatomical and functional magnetic resonance imaging (MRI) scans is necessary for MR-guided head and neck cancer (HNC) adaptive radiotherapy planning. Despite the quantitative capabilities of diffusion-weighted imaging (DWI) MRI for treatment plan adaptation, geometric distortion remains a considerable limitation. Therefore, we systematically investigated various deformable image registration (DIR) methods to co-register DWI and T2-weighted (T2W) images. MATERIALS/METHODS: We compared three commercial (ADMIRE, Velocity, Raystation) and three open-source (Elastix with default settings [Elastix Default], Elastix with parameter set 23 [Elastix 23], Demons) post-acquisition DIR methods applied to T2W and DWI MRI images acquired during the same imaging session in twenty immobilized HNC patients. In addition, we used the non-registered images (None) as a control comparator. Ground-truth segmentations of radiotherapy structures (tumour and organs at risk) were generated by a physician expert on both image sequences. For each registration approach, structures were propagated from T2W to DWI images. These propagated structures were then compared with ground-truth DWI structures using the Dice similarity coefficient and mean surface distance. RESULTS: 19 left submandibular glands, 18 right submandibular glands, 20 left parotid glands, 20 right parotid glands, 20 spinal cords, and 12 tumours were delineated. Most DIR methods took <30 s to execute per case, with the exception of Elastix 23 which took ∼458 s to execute per case. ADMIRE and Elastix 23 demonstrated improved performance over None for all metrics and structures (Bonferroni-corrected p < 0.05), while the other methods did not. Moreover, ADMIRE and Elastix 23 significantly improved performance in individual and pooled analysis compared to all other methods. CONCLUSIONS: The ADMIRE DIR method offers improved geometric performance with reasonable execution time so should be favoured for registering T2W and DWI images acquired during the same scan session in HNC patients. These results are important to ensure the appropriate selection of registration strategies for MR-guided radiotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Dosagem Radioterapêutica , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
17.
Radiother Oncol ; 185: 109717, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211282

RESUMO

INTRODUCTION: Diffusion-weighted imaging (DWI) on MRI-linear accelerator (MR-linac) systems can potentially be used for monitoring treatment response and adaptive radiotherapy in head and neck cancers (HNC) but requires extensive validation. We performed technical validation to compare six total DWI sequences on an MR-linac and MR simulator (MR sim) in patients, volunteers, and phantoms. METHODS: Ten human papillomavirus-positive oropharyngeal cancer patients and ten healthy volunteers underwent DWI on a 1.5 T MR-linac with three DWI sequences: echo planar imaging (EPI), split acquisition of fast spin echo signals (SPLICE), and turbo spin echo (TSE). Volunteers were also imaged on a 1.5 T MR sim with three sequences: EPI, BLADE (vendor tradename), and readout segmentation of long variable echo trains (RESOLVE). Participants underwent two scan sessions per device and two repeats of each sequence per session. Repeatability and reproducibility within-subject coefficient of variation (wCV) of mean ADC were calculated for tumors and lymph nodes (patients) and parotid glands (volunteers). ADC bias, repeatability/reproducibility metrics, SNR, and geometric distortion were quantified using a phantom. RESULTS: In vivo repeatability/reproducibility wCV for parotids were 5.41%/6.72%, 3.83%/8.80%, 5.66%/10.03%, 3.44%/5.70%, 5.04%/5.66%, 4.23%/7.36% for EPIMR-linac, SPLICE, TSE, EPIMR sim, BLADE, RESOLVE. Repeatability/reproducibility wCV for EPIMR-linac, SPLICE, TSE were 9.64%/10.28%, 7.84%/8.96%, 7.60%/11.68% for tumors and 7.80%/9.95%, 7.23%/8.48%, 10.82%/10.44% for nodes. All sequences except TSE had phantom ADC biases within ± 0.1x10-3 mm2/s for most vials (EPIMR-linac, SPLICE, and BLADE had 2, 3, and 1 vials out of 13 with larger biases, respectively). SNR of b = 0 images was 87.3, 180.5, 161.3, 171.0, 171.9, 130.2 for EPIMR-linac, SPLICE, TSE, EPIMR sim, BLADE, RESOLVE. CONCLUSION: MR-linac DWI sequences demonstrated near-comparable performance to MR sim sequences and warrant further clinical validation for treatment response assessment in HNC.


Assuntos
Neoplasias de Cabeça e Pescoço , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Imagem Ecoplanar/métodos
18.
J Med Imaging (Bellingham) ; 10(6): 065501, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37937259

RESUMO

Purpose: To improve segmentation accuracy in head and neck cancer (HNC) radiotherapy treatment planning for the 1.5T hybrid magnetic resonance imaging/linear accelerator (MR-Linac), three-dimensional (3D), T2-weighted, fat-suppressed magnetic resonance imaging sequences were developed and optimized. Approach: After initial testing, spectral attenuated inversion recovery (SPAIR) was chosen as the fat suppression technique. Five candidate SPAIR sequences and a nonsuppressed, T2-weighted sequence were acquired for five HNC patients using a 1.5T MR-Linac. MR physicists identified persistent artifacts in two of the SPAIR sequences, so the remaining three SPAIR sequences were further analyzed. The gross primary tumor volume, metastatic lymph nodes, parotid glands, and pterygoid muscles were delineated using five segmentors. A robust image quality analysis platform was developed to objectively score the SPAIR sequences on the basis of qualitative and quantitative metrics. Results: Sequences were analyzed for the signal-to-noise ratio and the contrast-to-noise ratio and compared with fat and muscle, conspicuity, pairwise distance metrics, and segmentor assessments. In this analysis, the nonsuppressed sequence was inferior to each of the SPAIR sequences for the primary tumor, lymph nodes, and parotid glands, but it was superior for the pterygoid muscles. The SPAIR sequence that received the highest combined score among the analysis categories was recommended to Unity MR-Linac users for HNC radiotherapy treatment planning. Conclusions: Our study led to two developments: an optimized, 3D, T2-weighted, fat-suppressed sequence that can be disseminated to Unity MR-Linac users and a robust image quality analysis pathway that can be used to objectively score SPAIR sequences and can be customized and generalized to any image quality optimization protocol. Improved segmentation accuracy with the proposed SPAIR sequence will potentially lead to improved treatment outcomes and reduced toxicity for patients by maximizing the target coverage and minimizing the radiation exposure of organs at risk.

19.
medRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205359

RESUMO

Objectives: We aim to characterize the serial quantitative apparent diffusion coefficient (ADC) changes of the target disease volume using diffusion-weighted imaging (DWI) acquired weekly during radiation therapy (RT) on a 1.5T MR-Linac and correlate these changes with tumor response and oncologic outcomes for head and neck squamous cell carcinoma (HNSCC) patients as part of a programmatic R-IDEAL biomarker characterization effort. Methods: Thirty patients with pathologically confirmed HNSCC who received curative-intent RT at the University of Texas MD Anderson Cancer Center, were included in this prospective study. Baseline and weekly Magnetic resonance imaging (MRI) (weeks 1-6) were obtained, and various ADC parameters (mean, 5 th , 10 th , 20 th , 30 th , 40 th , 50 th , 60 th , 70 th , 80 th , 90 th and 95 th percentile) were extracted from the target regions of interest (ROIs). Baseline and weekly ADC parameters were correlated with response during RT, loco-regional control, and the development of recurrence using the Mann-Whitney U test. The Wilcoxon signed-rank test was used to compare the weekly ADC versus baseline values. Weekly volumetric changes (Δvolume) for each ROI were correlated with ΔADC using Spearman's Rho test. Recursive partitioning analysis (RPA) was performed to identify the optimal ΔADC threshold associated with different oncologic outcomes. Results: There was an overall significant rise in all ADC parameters during different time points of RT compared to baseline values for both gross primary disease volume (GTV-P) and gross nodal disease volumes (GTV-N). The increased ADC values for GTV-P were statistically significant only for primary tumors achieving complete remission (CR) during RT. RPA identified GTV-P ΔADC 5 th percentile >13% at the 3 rd week of RT as the most significant parameter associated with CR for primary tumor during RT (p <0.001). Baseline ADC parameters for GTV-P and GTV-N didn't significantly correlate with response to RT or other oncologic outcomes. There was a significant decrease in residual volume of both GTV-P & GTV-N throughout the course of RT. Additionally, a significant negative correlation between mean ΔADC and Δvolume for GTV-P at the 3 rd and 4 th week of RT was detected (r = -0.39, p = 0.044 & r = -0.45, p = 0.019, respectively). Conclusion: Assessment of ADC kinetics at regular intervals throughout RT seems to be correlated with RT response. Further studies with larger cohorts and multi-institutional data are needed for validation of ΔADC as a model for prediction of response to RT.

20.
Cancers (Basel) ; 14(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35454816

RESUMO

MR-linac devices offer the potential for advancements in radiotherapy (RT) treatment of head and neck cancer (HNC) by using daily MR imaging performed at the time and setup of treatment delivery. This article aims to present a review of current adaptive RT (ART) methods on MR-Linac devices directed towards the sparing of organs at risk (OAR) and a view of future adaptive techniques seeking to improve the therapeutic ratio. This ratio expresses the relationship between the probability of tumor control and the probability of normal tissue damage and is thus an important conceptual metric of success in the sparing of OARs. Increasing spatial conformity of dose distributions to target volume and OARs is an initial step in achieving therapeutic improvements, followed by the use of imaging and clinical biomarkers to inform the clinical decision-making process in an ART paradigm. Pre-clinical and clinical findings support the incorporation of biomarkers into ART protocols and investment into further research to explore imaging biomarkers by taking advantage of the daily MR imaging workflow. A coherent understanding of this road map for RT in HNC is critical for directing future research efforts related to sparing OARs using image-guided radiotherapy (IGRT).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA