Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579286

RESUMO

The overall prognosis of acute myeloid leukemia (AML) remains dismal, largely due to the inability of current therapies to kill leukemia stem cells (LSCs) with intrinsic resistance. Loss of the stress sensor GADD45A is implicated in poor clinical outcomes but its role in LSCs and AML pathogenesis is unknown. Here we define GADD45A as a key downstream target of LGR4 oncogenic signaling and discover a regulatory role for GADD45A loss in promoting leukemia-initiating activity and oxidative resistance in LGR4/HOXA9-dependent AML, a poor prognosis subset of leukemia. Knockout of GADD45A enhances AML progression in murine and patient-derived xenograft (PDX) mouse models. Deletion of GADD45A induces substantial mutations, increases LSC self-renewal and stemness in vivo and reduces levels of reactive oxygen species (ROS), accompanied by decreased response to ROS-associated genotoxic agents (e.g., ferroptosis inducer RSL3) and acquisition of an increasingly aggressive phenotype upon serial transplantation in mice. Our single-cell CITE-seq analysis on patient-derived LSCs in PDX mice and subsequent functional studies in murine LSCs and primary AML patient cells show that loss of GADD45A is associated with resistance to ferroptosis (an iron-dependent oxidative cell death caused by ROS accumulation) through aberrant activation of antioxidant pathways related to iron and ROS detoxification such as FTH1 and PRDX1, upregulation of which correlates with unfavorable outcomes in AML patients. These results reveal a therapy resistance mechanism contributing to poor prognosis and support a role for GADD45A loss as a critical step for leukemia-initiating activity and as a target to overcome resistance in aggressive leukemia.

2.
Blood ; 143(18): 1873-1877, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38457663

RESUMO

ABSTRACT: High prevalence of IDH mutations in seronegative rheumatoid arthritis (RA) with myeloid neoplasm, elevated 2-hydroxyglutarate, dysregulated innate immunity, and proinflammatory microenvironment suggests causative association between IDH mutations and seronegative RA. Our findings merit investigation of IDH inhibitors as therapeutics for seronegative IDH-mutated RA.


Assuntos
Artrite Reumatoide , Imunidade Inata , Isocitrato Desidrogenase , Mutação , Humanos , Artrite Reumatoide/imunologia , Artrite Reumatoide/genética , Isocitrato Desidrogenase/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso
3.
Hum Mol Genet ; 28(18): 3000-3012, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31071221

RESUMO

Inflammation is activated prior to symptoms in neurodegenerative diseases, providing a plausible pathogenic mechanism. Indeed, genetic and pharmacological ablation studies in animal models of several neurodegenerative diseases demonstrate that inflammation is required for pathology. However, while there is growing evidence that inflammation-mediated pathology may be the common mechanism underlying neurodegenerative diseases, including those due to dominantly inherited expanded repeats, the proximal causal agent is unknown. Expanded CAG.CUG repeat double-stranded RNA causes inflammation-mediated pathology when expressed in Drosophila. Repeat dsRNA is recognized by Dicer-2 as a foreign or 'non-self' molecule triggering both antiviral RNA and RNAi pathways. Neither of the RNAi pathway cofactors R2D2 nor loquacious are necessary, indicating antiviral RNA activation. RNA modification enables avoidance of recognition as 'non-self' by the innate inflammatory surveillance system. Human ADAR1 edits RNA conferring 'self' status and when co-expressed with expanded CAG.CUG dsRNA in Drosophila the pathology is lost. Cricket Paralysis Virus protein CrPV-1A is a known antagonist of Argonaute-2 in Drosophila antiviral defense. CrPV-1A co-expression also rescues pathogenesis, confirming anti-viral-RNA response. Repeat expansion mutation therefore confers 'non-self' recognition of endogenous RNA, thereby providing a proximal, autoinflammatory trigger for expanded repeat neurodegenerative diseases.


Assuntos
Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Mutação , Doenças Neurodegenerativas/genética , RNA de Cadeia Dupla/genética , Expansão das Repetições de Trinucleotídeos , Viroses/genética , Animais , Proteínas Argonautas/metabolismo , Variações do Número de Cópias de DNA , Dicistroviridae/fisiologia , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/metabolismo , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/patologia , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Viroses/complicações , Viroses/virologia
4.
Blood ; 129(6): 771-782, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-27956387

RESUMO

Acute myeloid leukemia (AML) is an aggressive malignancy where despite improvements in conventional chemotherapy and bone marrow transplantation, overall survival remains poor. Sphingosine kinase 1 (SPHK1) generates the bioactive lipid sphingosine 1-phosphate (S1P) and has established roles in tumor initiation, progression, and chemotherapy resistance in a wide range of cancers. The role and targeting of SPHK1 in primary AML, however, has not been previously investigated. Here we show that SPHK1 is overexpressed and constitutively activated in primary AML patient blasts but not in normal mononuclear cells. Subsequent targeting of SPHK1 induced caspase-dependent cell death in AML cell lines, primary AML patient blasts, and isolated AML patient leukemic progenitor/stem cells, with negligible effects on normal bone marrow CD34+ progenitors from healthy donors. Furthermore, administration of SPHK1 inhibitors to orthotopic AML patient-derived xenografts reduced tumor burden and prolonged overall survival without affecting murine hematopoiesis. SPHK1 inhibition was associated with reduced survival signaling from S1P receptor 2, resulting in selective downregulation of the prosurvival protein MCL1. Subsequent analysis showed that the combination of BH3 mimetics with either SPHK1 inhibition or S1P receptor 2 antagonism triggered synergistic AML cell death. These results support the notion that SPHK1 is a bona fide therapeutic target for the treatment of AML.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Clorometilcetonas de Aminoácidos/farmacologia , Amino Álcoois/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Inibidores de Caspase/farmacologia , Caspases/genética , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Hum Mol Genet ; 22(14): 2811-9, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23525903

RESUMO

Dominantly inherited expanded repeat neurodegenerative diseases are caused by the expansion of variable copy number tandem repeat sequences in otherwise unrelated genes. Some repeats encode polyglutamine that is thought to be toxic; however, other repeats do not encode polyglutamine indicating either multiple pathogenic pathways or an alternative common toxic agent. As these diseases share numerous clinical features and expanded repeat RNA is a common intermediary, RNA-based pathogenesis has been proposed, based on its toxicity in animal models. In Drosophila, double-stranded (rCAG.rCUG∼100) RNA toxicity is Dicer dependent and generates single-stranded (rCAG)7, an entity also detected in affected Huntington's Disease (HD) brains. We demonstrate that Drosophila rCAG.rCUG∼100 RNA toxicity perturbs several pathways including innate immunity, consistent with the observation in HD that immune activation precedes neuronal toxicity. Our results show that Drosophila rCAG.rCUG∼100 RNA toxicity is dependent upon Toll signaling and sensitive to autophagy, further implicating innate immune activation. In exhibiting molecular and cellular hallmarks of HD, double-stranded RNA-mediated activation of innate immunity is, therefore, a candidate pathway for this group of human genetic diseases.


Assuntos
Autofagia , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Doença de Huntington/genética , RNA de Cadeia Dupla/toxicidade , Receptores Toll-Like/metabolismo , Expansão das Repetições de Trinucleotídeos , Animais , Proteínas de Drosophila/genética , Feminino , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Masculino , Neurônios/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais , Receptores Toll-Like/genética
7.
Hum Mol Genet ; 20(19): 3757-68, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21724553

RESUMO

The pathogenic agent responsible for the expanded repeat diseases, a group of neurodegenerative diseases that includes Huntington's disease is not yet fully understood. Expanded polyglutamine (polyQ) is thought to be the toxic agent in certain cases, however, not all expanded repeat disease genes can encode a polyQ sequence. Since a repeat-containing RNA intermediary is common to all of these diseases, hairpin-forming single-stranded RNA has been investigated as a potential common pathogenic agent. More recently, it has become apparent that most of the expanded repeat disease loci have transcription occurring from both strands, raising the possibility that the complementary repeat RNAs could form a double-stranded structure. In our investigation using Drosophila models of these diseases, we identified a fortuitous integration event that models bidirectional repeat RNA transcription with the resultant flies exhibiting inducible pathology. We therefore established further lines of Drosophila expressing independent complementary repeat RNAs and found that these are toxic. The Dicer pathway is essential for this toxicity and in neuronal cells accounts for metabolism of the high copy number (CAG.CUG)(100) double-stranded RNAs down to (CAG)(7) single-stranded small RNAs. We also observe significant changes to the microRNA profile in neurons. These data identify a novel pathway through which double-stranded repeat RNA is toxic and capable of eliciting symptoms common to neurodegenerative human diseases resulting from dominantly inherited expanded repeats.


Assuntos
Drosophila/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Expansão das Repetições de Trinucleotídeos , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Humanos , Masculino , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Conformação de Ácido Nucleico , RNA Helicases/genética , RNA Helicases/metabolismo , RNA de Cadeia Dupla/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
8.
Hum Mol Genet ; 20(14): 2783-94, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21518731

RESUMO

Recent evidence supports a role for RNA as a common pathogenic agent in both the 'polyglutamine' and 'untranslated' dominant expanded repeat disorders. One feature of all repeat sequences currently associated with disease is their predicted ability to form a hairpin secondary structure at the RNA level. In order to investigate mechanisms by which hairpin-forming repeat RNAs could induce neurodegeneration, we have looked for alterations in gene transcript levels as hallmarks of the cellular response to toxic hairpin repeat RNAs. Three disease-associated repeat sequences--CAG, CUG and AUUCU--were specifically expressed in the neurons of Drosophila and resultant common transcriptional changes assessed by microarray analyses. Transcripts that encode several components of the Akt/Gsk3-ß signalling pathway were altered as a consequence of expression of these repeat RNAs, indicating that this pathway is a component of the neuronal response to these pathogenic RNAs and may represent an important common therapeutic target in this class of diseases.


Assuntos
Proteínas de Drosophila/metabolismo , Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/biossíntese , Sequências Repetitivas de Ácido Nucleico , Transdução de Sinais , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Doenças Neurodegenerativas/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA/genética
9.
Differentiation ; 83(1): 47-59, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22099176

RESUMO

Granulocyte-macrophage colony stimulating factor (GM-CSF) promotes the growth, survival, differentiation and activation of normal myeloid cells and is essential for fully functional macrophage differentiation in vivo. To better understand the mechanisms by which growth factors control the balance between proliferation and self-renewal versus growth-suppression and differentiation we have used the bi-potent FDB1 myeloid cell line, which proliferates in IL-3 and differentiates to granulocytes and macrophages in response to GM-CSF. This provides a manipulable model in which to dissect the switch between growth and differentiation. We show that, in the context of signaling from an activating mutant of the GM-CSF receptor ß subunit, a single intracellular tyrosine residue (Y577) mediates the granulocyte fate decision. Loss of granulocyte differentiation in a Y577F second-site mutant is accompanied by enhanced macrophage differentiation and accumulation of ß-catenin together with activation of Tcf4 and other Wnt target genes. These include the known macrophage lineage inducer, Egr1. We show that forced expression of Tcf4 or a stabilised ß-catenin mutant is sufficient to promote macrophage differentiation in response to GM-CSF and that GM-CSF can regulate ß-catenin stability, most likely via GSK3ß. Consistent with this pathway being active in primary cells we show that inhibition of GSK3ß activity promotes the formation of macrophage colonies at the expense of granulocyte colonies in response to GM-CSF. This study therefore identifies a novel pathway through which growth factor receptor signaling can interact with transcriptional regulators to influence lineage choice during myeloid differentiation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem da Célula , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Macrófagos/citologia , beta Catenina/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Granulócitos/citologia , Camundongos , Mutação , Transdução de Sinais , Fator de Transcrição 4 , Via de Sinalização Wnt/genética , beta Catenina/genética
10.
Pathology ; 55(1): 77-85, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36031433

RESUMO

The identification of a somatic mutation associated with myeloid malignancy is of diagnostic importance in myeloproliferative neoplasms (MPNs). Individuals with no mutation detected in common screening tests for variants in JAK2, CALR, and MPL are described as 'triple-negative' and pose a diagnostic challenge if there is no other evidence of a clonal disorder. To identify potential drivers that might explain the clinical phenotype, we used an extended sequencing panel to characterise a cohort of 44 previously diagnosed triple-negative MPN patients for canonical mutations in JAK2, MPL and CALR at low variant allele frequency (found in 4/44 patients), less common variants in the JAK-STAT signalling pathway (12 patients), or other variants in recurrently mutated genes from myeloid malignancies (18 patients), including hotspot variants of potential clinical relevance in eight patients. In one patient with thrombocytosis we identified biallelic germline MPL variants. Neither MPL variant was activating in cell proliferation assays, and one of the variants was not expressed on the cell surface, yet co-expression of both variants led to thrombopoietin hypersensitivity. Our results highlight the clinical value of extended sequencing including germline variant analysis and illustrate the need for detailed functional assays to determine whether rare variants in JAK2 or MPL are pathogenic.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Receptores de Trombopoetina/genética , Calreticulina/genética , Calreticulina/metabolismo , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Mutação
11.
Cancer Cell ; 41(7): 1309-1326.e10, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37295428

RESUMO

The first step of oncogenesis is the acquisition of a repertoire of genetic mutations to initiate and sustain the malignancy. An important example of this initiation phase in acute leukemias is the formation of a potent oncogene by chromosomal translocations between the mixed lineage leukemia (MLL) gene and one of 100 translocation partners, known as the MLL recombinome. Here, we show that circular RNAs (circRNAs)-a family of covalently closed, alternatively spliced RNA molecules-are enriched within the MLL recombinome and can bind DNA, forming circRNA:DNA hybrids (circR loops) at their cognate loci. These circR loops promote transcriptional pausing, proteasome inhibition, chromatin re-organization, and DNA breakage. Importantly, overexpressing circRNAs in mouse leukemia xenograft models results in co-localization of genomic loci, de novo generation of clinically relevant chromosomal translocations mimicking the MLL recombinome, and hastening of disease onset. Our findings provide fundamental insight into the acquisition of chromosomal translocations by endogenous RNA carcinogens in leukemia.


Assuntos
Leucemia , Translocação Genética , Animais , Camundongos , Humanos , RNA Circular/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia/genética , Leucemia/patologia , DNA , Proteínas de Fusão Oncogênica/genética
12.
Cancer Discov ; 13(8): 1922-1947, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37191437

RESUMO

Leukemia stem cells (LSC) possess distinct self-renewal and arrested differentiation properties that are responsible for disease emergence, therapy failure, and recurrence in acute myeloid leukemia (AML). Despite AML displaying extensive biological and clinical heterogeneity, LSC with high interleukin-3 receptor (IL3R) levels are a constant yet puzzling feature, as this receptor lacks tyrosine kinase activity. Here, we show that the heterodimeric IL3Rα/ßc receptor assembles into hexamers and dodecamers through a unique interface in the 3D structure, where high IL3Rα/ßc ratios bias hexamer formation. Importantly, receptor stoichiometry is clinically relevant as it varies across the individual cells in the AML hierarchy, in which high IL3Rα/ßc ratios in LSCs drive hexamer-mediated stemness programs and poor patient survival, while low ratios mediate differentiation. Our study establishes a new paradigm in which alternative cytokine receptor stoichiometries differentially regulate cell fate, a signaling mechanism that may be generalizable to other transformed cellular hierarchies and of potential therapeutic significance. SIGNIFICANCE: Stemness is a hallmark of many cancers and is largely responsible for disease emergence, progression, and relapse. Our finding that clinically significant stemness programs in AML are directly regulated by different stoichiometries of cytokine receptors represents a hitherto unexplained mechanism underlying cell-fate decisions in cancer stem cell hierarchies. This article is highlighted in the In This Issue feature, p. 1749.


Assuntos
Leucemia Mieloide Aguda , Receptores de Citocinas , Humanos , Receptores de Citocinas/uso terapêutico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Fosforilação , Transdução de Sinais , Proliferação de Células , Células-Tronco Neoplásicas
13.
Nat Commun ; 13(1): 2614, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551192

RESUMO

The interaction of germline variation and somatic cancer driver mutations is under-investigated. Here we describe the genomic mitochondrial landscape in adult acute myeloid leukaemia (AML) and show that rare variants affecting the nuclear- and mitochondrially-encoded complex I genes show near-mutual exclusivity with somatic driver mutations affecting isocitrate dehydrogenase 1 (IDH1), but not IDH2 suggesting a unique epistatic relationship. Whereas AML cells with rare complex I variants or mutations in IDH1 or IDH2 all display attenuated mitochondrial respiration, heightened sensitivity to complex I inhibitors including the clinical-grade inhibitor, IACS-010759, is observed only for IDH1-mutant AML. Furthermore, IDH1 mutant blasts that are resistant to the IDH1-mutant inhibitor, ivosidenib, retain sensitivity to complex I inhibition. We propose that the IDH1 mutation limits the flexibility for citrate utilization in the presence of impaired complex I activity to a degree that is not apparent in IDH2 mutant cells, exposing a mutation-specific metabolic vulnerability. This reduced metabolic plasticity explains the epistatic relationship between the germline complex I variants and oncogenic IDH1 mutation underscoring the utility of genomic data in revealing metabolic vulnerabilities with implications for therapy.


Assuntos
Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Adulto , Mutação em Linhagem Germinativa , Humanos , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação
16.
Front Mol Neurosci ; 6: 25, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24046729

RESUMO

Previously, we hypothesized that an RNA-based pathogenic pathway has a causal role in the dominantly inherited unstable expanded repeat neurodegenerative diseases. In support of this hypothesis we, and others, have characterized rCAG.rCUG 100 repeat double-strand RNA (dsRNA) as a previously unidentified agent capable of causing pathogenesis in a Drosophila model of neurodegenerative disease. Dicer, Toll, and autophagy pathways have distinct roles in this Drosophila dsRNA pathology. Dicer dependence is accompanied by cleavage of rCAG.rCUG 100 repeat dsRNA down to r(CAG) 7 21-mers. Among the "molecular hallmarks" of this pathway that have been identified in Drosophila, some [i.e., r(CAG) 7 and elevated tumor necrosis factor] correlate with observations in affected people (e.g., Huntington's disease and amyotrophic lateral sclerosis) or in related animal models (i.e., autophagy). The Toll pathway is activated in the presence of repeat-containing dsRNA and toxicity is also dependent on this pathway. How might the endogenously expressed dsRNA mediate Toll-dependent toxicity in neuronal cells? Endogenous RNAs are normally shielded from Toll pathway activation as part of the mechanism to distinguish "self" from "non-self" RNAs. This typically involves post-transcriptional modification of the RNA. Therefore, it is likely that rCAG.rCUG 100 repeat dsRNA has a characteristic property that interferes with or evades this normal mechanism of shielding. We predict that repeat expansion leads to an alteration in RNA structure and/or form that perturbs RNA modification, causing the unshielded repeat RNA (in the form of its Dicer-cleaved products) to be recognized by Toll-like receptors (TLRs), with consequent activation of the Toll pathway leading to loss of cell function and then ultimately cell death. We hypothesize that the proximal cause of expanded repeat neurodegenerative diseases is the TLR recognition (and resultant innate inflammatory response) of repeat RNA as "non-self" due to their paucity of "self" modification.

18.
PLoS One ; 7(6): e38516, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22715390

RESUMO

Expanded DNA repeat sequences are known to cause over 20 diseases, including Huntington's disease, several types of spinocerebellar ataxia and myotonic dystrophy type 1 and 2. A shared genetic basis, and overlapping clinical features for some of these diseases, indicate that common pathways may contribute to pathology. Multiple mechanisms, mediated by both expanded homopolymeric proteins and expanded repeat RNA, have been identified by the use of model systems, that may account for shared pathology. The use of such animal models enables identification of distinct pathways and their 'molecular hallmarks' that can be used to determine the contribution of each pathway in human pathology. Here we characterise a tergite disruption phenotype in adult flies, caused by ubiquitous expression of either untranslated CUG or CAG expanded repeat RNA. Using the tergite phenotype as a quantitative trait we define a new genetic system in which to examine 'hairpin' repeat RNA-mediated cellular perturbation. Further experiments use this system to examine whether pathways involving Muscleblind sequestration or Dicer processing, which have been shown to mediate repeat RNA-mediated pathology in other model systems, contribute to cellular perturbation in this model.


Assuntos
Regulação da Expressão Gênica , Doença de Huntington/metabolismo , RNA/biossíntese , Expansão das Repetições de Trinucleotídeos , Repetições de Trinucleotídeos , Animais , Modelos Animais de Doenças , Drosophila melanogaster , Humanos , Doença de Huntington/genética , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA