Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0436322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37162333

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has raised concerns about reduced vaccine effectiveness and the increased risk of infection, and while repeated homologous booster shots are recommended for elderly and immunocompromised individuals, they cannot completely protect against breakthrough infections. In our previous study, we assessed the immunogenicity of an adenovirus-based vaccine expressing SARS-CoV-2 S1 (Ad5.S1) in mice, which induced robust humoral and cellular immune responses (E. Kim, F. J. Weisel, S. C. Balmert, M. S. Khan, et al., Eur J Immunol 51:1774-1784, 2021, https://doi.org/10.1002/eji.202149167). In this follow-up study, we found that the mice had high titers of anti-S1 antibodies 1 year after vaccination, and one booster dose of the nonadjuvanted rS1Beta (recombinant S1 protein of SARS-CoV-2 Beta [B.1.351]) subunit vaccine was effective at stimulating strong long-lived S1-specific immune responses and inducing significantly high neutralizing antibodies against Wuhan, Beta, and Delta strains, with 3.6- to 19.5-fold increases. Importantly, the booster dose also elicited cross-reactive antibodies, resulting in angiotensin-converting enzyme 2 (ACE2) binding inhibition against spikes of SARS-CoV-2, including Omicron variants, persisting for >28 weeks after booster vaccination. Interestingly, the levels of neutralizing antibodies were correlated not only with the level of S1 binding IgG but also with ACE2 inhibition. Our findings suggest that the rS1Beta subunit vaccine candidate as a booster has the potential to offer cross-neutralization against broad variants and has important implications for the vaccine control of newly emerging breakthrough SARS-CoV-2 variants in elderly individuals primed with adenovirus-based vaccines like AZD1222 and Ad26.COV2.S. IMPORTANCE Vaccines have significantly reduced the incidences of severe coronavirus disease 2019 (COVID-19) cases and deaths. However, the emergence of SARS-CoV-2 variants has raised concerns about their increased transmissibility and ability to evade neutralizing antibodies, especially among elderly individuals who are at higher risks of mortality and reductions of vaccine effectiveness. To address this, a heterologous booster vaccination strategy has been considered as a solution to protect the elderly population against breakthrough infections caused by emerging variants. This study evaluated the booster effect of an S1 subunit vaccine in aged mice that had been previously primed with adenoviral vaccines, providing valuable preclinical evidence for elderly people vaccinated with the currently approved COVID-19 vaccines. This study confirms the potential for using the S1 subunit vaccine as a booster to enhance cross-neutralizing antibodies against emerging variants of concern.


Assuntos
COVID-19 , Imunidade Humoral , Idoso , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2 , Ad26COVS1 , Vacinas contra COVID-19 , ChAdOx1 nCoV-19 , Seguimentos , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Infecções Irruptivas , Anticorpos Antivirais
2.
mBio ; 14(5): e0207023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830800

RESUMO

IMPORTANCE: The study provides important insights into the immunogenicity and efficacy of a tetravalent protein subunit vaccine candidate against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The vaccine induced both humoral and cellular immune responses in nonhuman primates with controlled SIVagm infection and was able to generate Omicron variant-specific antibodies without specifically vaccinating with Omicron. These findings suggest that the tetravalent composition of the vaccine candidate could provide broad protection against multiple SARS-CoV-2 variants while minimizing the risk of immune escape and the emergence of new variants. Additionally, the use of rhesus macaques with controlled SIVsab infection may better represent vaccine immunogenicity in humans with chronic viral diseases, highlighting the importance of preclinical animal models in vaccine development. Overall, the study provides valuable information for the development and implementation of coronavirus disease 2019 vaccines, particularly for achieving global vaccine equity and addressing emerging variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Macaca mulatta , COVID-19/prevenção & controle , Vacinação , Vacinas contra COVID-19 , Imunidade Celular , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus
3.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993692

RESUMO

The COVID-19 pandemic has highlighted the need for safe and effective vaccines to be rapidly developed and distributed worldwide, especially considering the emergence of new SARS-CoV-2 variants. Protein subunit vaccines have emerged as a promising approach due to their proven safety record and ability to elicit robust immune responses. In this study, we evaluated the immunogenicity and efficacy of an adjuvanted tetravalent S1 subunit protein COVID-19 vaccine candidate composed of the Wuhan, B.1.1.7 variant, B.1.351 variant, and P.1 variant spike proteins in a nonhuman primate model with controlled SIVsab infection. The vaccine candidate induced both humoral and cellular immune responses, with T- and B cell responses mainly peaking post-boost immunization. The vaccine also elicited neutralizing and cross-reactive antibodies, ACE2 blocking antibodies, and T-cell responses, including spike specific CD4+ T cells. Importantly, the vaccine candidate was able to generate Omicron variant spike binding and ACE2 blocking antibodies without specifically vaccinating with Omicron, suggesting potential broad protection against emerging variants. The tetravalent composition of the vaccine candidate has significant implications for COVID-19 vaccine development and implementation, providing broad antibody responses against numerous SARS-CoV-2 variants.

4.
Eur J Med Chem ; 208: 112773, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32898793

RESUMO

Decaprenylphosphoryl-ß-d-ribose 2'-oxidoreductase (DprE1) is a promising drug target for the development of novel anti-tubercular agents, and inhibitors of DprE1 are being investigated extensively. Among them, the 1,3-benzothiazinone compounds such as BTZ043, and its closer congener, PBTZ169, are undergoing clinical studies. It has been shown that both BTZ compounds are prodrugs, the nitro group is reduced to nitroso first, to which an adjacent Cys387 in the DprE1 binding pocket is covalently bound and results in suicide enzyme inhibition. We figured that replacement of the nitro with an electrophilic warhead would still achieve covalent interaction with nucleophilic Cys387, while the required reductive activation could be circumvented. To test this hypothesis, a number of covalent inhibitors of DprE1 were designed and prepared. The compounds inhibitory potency against DprE1 and anti-tubercular activity were investigated, their chemical reactivity, formation of covalent adduct between the warhead and the enzyme was demonstrated by mass spectrometry.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Tiazinas/farmacologia , Oxirredutases do Álcool/química , Antituberculosos/síntese química , Proteínas de Bactérias/química , Cisteína/química , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Tiazinas/síntese química
5.
J Med Chem ; 63(13): 7066-7080, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32530281

RESUMO

The Mg2+-dependent Mycobacterium tuberculosis salicylate synthase (MbtI) is a key enzyme involved in the biosynthesis of siderophores. Because iron is essential for the survival and pathogenicity of the microorganism, this protein constitutes an attractive target for antitubercular therapy, also considering the absence of homologous enzymes in mammals. An extension of the structure-activity relationships of our furan-based candidates allowed us to disclose the most potent competitive inhibitor known to date (10, Ki = 4 µM), which also proved effective on mycobacterial cultures. By structural studies, we characterized its unexpected Mg2+-independent binding mode. We also investigated the role of the Mg2+ cofactor in catalysis, analyzing the first crystal structure of the MbtI-Mg2+-salicylate ternary complex. Overall, these results pave the way for the development of novel antituberculars through the rational design of improved MbtI inhibitors.


Assuntos
Desenho de Fármacos , Liases/química , Liases/metabolismo , Magnésio/metabolismo , Mycobacterium tuberculosis/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA