Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biometals ; 27(2): 349-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24549594

RESUMO

Although iron is a first-line pro-oxidant that modulates clinical manifestations of various systemic diseases, including diabetes, the individual tissue damage generated by active oxidant insults has not been demonstrated in current animal models of diabetes. We tested the hypothesis that oxidative stress is involved in the severity of the tissues injury when iron supplementation is administered in a model of type 1 diabetes. Streptozotocin (Stz)-induced diabetic and non-diabetic Fischer rats were maintained with or without a treatment consisting of iron dextran ip at 0.1 mL day(-1) doses administered for 4 days at intervals of 5 days. After 3 weeks, an extensive increase (p < 0.001) in the production of reactive oxygen species (ROS) in neutrophils of the diabetic animals on iron overload was observed. Histological analysis revealed that this treatment also resulted in higher (p < 0.05) tissue iron deposits, a higher (p < 0.001) number of inflammatory cells in the pancreas, and apparent cardiac fibrosis, as shown by an increase (p < 0.05) in type III collagen levels, which result in dysfunctional myocardial. Carbonyl protein modification, a marker of oxidative stress, was consistently higher (p < 0.01) in the tissues of the iron-treated rats with diabetes. Moreover, a significant positive correlation was found between ROS production and iron pancreas stores (r = 0.42, p < 0.04), iron heart stores (r = 0.54, p < 0.04), and change of the carbonyl protein content in pancreas (r = 0.49, p < 0.009), and heart (r = 0.48, p < 0.02). A negative correlation was still found between ROS production and total glutathione content in pancreas (r = -0.50, p < 0.03) and heart (r = -0.45, p < 0.04). In conclusion, our results suggest that amplified toxicity in pancreatic and cardiac tissues in rats with diabetes on iron overload might be attributed to increased oxidative stress.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Complexo Ferro-Dextran/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/induzido quimicamente , Sobrecarga de Ferro/induzido quimicamente , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/metabolismo , Complexo Ferro-Dextran/administração & dosagem , Complexo Ferro-Dextran/farmacocinética , Masculino , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA