Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 146(10): 4217-4232, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37143315

RESUMO

Myotonic dystrophy type 1 is a dominantly inherited multisystemic disease caused by CTG tandem repeat expansions in the DMPK 3' untranslated region. These expanded repeats are transcribed and produce toxic CUG RNAs that sequester and inhibit activities of the MBNL family of developmental RNA processing factors. Although myotonic dystrophy is classified as a muscular dystrophy, the brain is also severely affected by an unusual cohort of symptoms, including hypersomnia, executive dysfunction, as well as early onsets of tau/MAPT pathology and cerebral atrophy. To address the molecular and cellular events that lead to these pathological outcomes, we recently generated a mouse Dmpk CTG expansion knock-in model and identified choroid plexus epithelial cells as particularly affected by the expression of toxic CUG expansion RNAs. To determine if toxic CUG RNAs perturb choroid plexus functions, alternative splicing analysis was performed on lateral and hindbrain choroid plexi from Dmpk CTG knock-in mice. Choroid plexus transcriptome-wide changes were evaluated in Mbnl2 knockout mice, a developmental-onset model of myotonic dystrophy brain dysfunction. To determine if transcriptome changes also occurred in the human disease, we obtained post-mortem choroid plexus for RNA-seq from neurologically unaffected (two females, three males; ages 50-70 years) and myotonic dystrophy type 1 (one female, three males; ages 50-70 years) donors. To test that choroid plexus transcriptome alterations resulted in altered CSF composition, we obtained CSF via lumbar puncture from patients with myotonic dystrophy type 1 (five females, five males; ages 35-55 years) and non-myotonic dystrophy patients (three females, four males; ages 26-51 years), and western blot and osmolarity analyses were used to test CSF alterations predicted by choroid plexus transcriptome analysis. We determined that CUG RNA induced toxicity was more robust in the lateral choroid plexus of Dmpk CTG knock-in mice due to comparatively higher Dmpk and lower Mbnl RNA levels. Impaired transitions to adult splicing patterns during choroid plexus development were identified in Mbnl2 knockout mice, including mis-splicing previously found in Dmpk CTG knock-in mice. Whole transcriptome analysis of myotonic dystrophy type 1 choroid plexus revealed disease-associated RNA expression and mis-splicing events. Based on these RNA changes, predicted alterations in ion homeostasis, secretory output and CSF composition were confirmed by analysis of myotonic dystrophy type 1 CSF. Our results implicate choroid plexus spliceopathy and concomitant alterations in CSF homeostasis as an unappreciated contributor to myotonic dystrophy type 1 CNS pathogenesis.


Assuntos
Distrofia Miotônica , Humanos , Feminino , Camundongos , Animais , Distrofia Miotônica/genética , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , RNA/genética , Camundongos Knockout , Expansão das Repetições de Trinucleotídeos
2.
Muscle Nerve ; 64(2): 219-224, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34037996

RESUMO

INTRODUCTION/AIMS: We studied a patient with a congenital myasthenic syndrome (CMS) caused by a dominant mutation in the synaptotagmin 2 gene (SYT2) and compared the clinical features of this patient with those of a previously described patient with a recessive mutation in the same gene. METHODS: We performed electrodiagnostic (EDX) studies, genetic studies, muscle biopsy, microelectrode recordings and electron microscopy (EM). RESULTS: Both patients presented with muscle weakness and bulbar deficits, which were worse in the recessive form. EDX studies showed presynaptic failure, which was more prominent in the recessive form. Microelectrode studies in the dominant form showed a marked reduction of the quantal content, which increased linearly with higher frequencies of nerve stimulation. The MEPP frequencies were normal at rest but increased markedly with higher frequencies of nerve stimulation. The EM demonstrated overdeveloped postsynaptic folding, and abundant endosomes, multivesicular bodies and degenerative lamellar bodies inside small nerve terminals. DISCUSSION: The recessive form of CMS caused by a SYT2 mutation showed far more severe clinical manifestations than the dominant form. The pathogenesis of the dominant form likely involves a dominant-negative effect due to disruption of the dual function of synaptotagmin as a Ca2+ -sensor and modulator of synaptic vesicle exocytosis.


Assuntos
Mutação/genética , Síndromes Miastênicas Congênitas/genética , Junção Neuromuscular/genética , Sinaptotagmina II/genética , Adulto , Pré-Escolar , Feminino , Humanos , Síndrome Miastênica de Lambert-Eaton/genética , Síndrome Miastênica de Lambert-Eaton/fisiopatologia , Masculino , Debilidade Muscular/genética , Debilidade Muscular/fisiopatologia , Síndromes Miastênicas Congênitas/diagnóstico , Junção Neuromuscular/fisiopatologia
3.
Am J Hum Genet ; 100(4): 659-665, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28318499

RESUMO

Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through genetic mapping of disease loci and whole-exome sequencing in four unrelated multiplex families presenting with severe AMC, we identified biallelic loss-of-function mutations in LGI4 (leucine-rich glioma-inactivated 4). LGI4 is a ligand secreted by Schwann cells that regulates peripheral nerve myelination via its cognate receptor ADAM22 expressed by neurons. Immunolabeling experiments and transmission electron microscopy of the sciatic nerve from one of the affected individuals revealed a lack of myelin. Functional tests using affected individual-derived iPSCs showed that these germline mutations caused aberrant splicing of the endogenous LGI4 transcript and in a cell-based assay impaired the secretion of truncated LGI4 protein. This is consistent with previous studies reporting arthrogryposis in Lgi4-deficient mice due to peripheral hypomyelination. This study adds to the recent reports implicating defective axoglial function as a key cause of AMC.


Assuntos
Artrogripose/genética , Proteínas da Matriz Extracelular/genética , Mutação , Células de Schwann/metabolismo , Artrogripose/diagnóstico , Artrogripose/patologia , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso , Linhagem
4.
Mol Genet Metab ; 130(1): 58-64, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32173240

RESUMO

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a fatal disorder characterized by progressive gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, skeletal myopathy, ophthalmoparesis, and ptosis. MNGIE stems from deficient thymidine phosphorylase activity (TP) leading to toxic elevations of plasma thymidine. Hematopoietic stem cell transplant (HSCT) restores TP activity and halts disease progression but has high transplant-related morbidity and mortality. Liver transplant (LT) was reported to restore TP activity in two adult MNGIE patients. We report successful LT in four additional MNGIE patients, including a pediatric patient. Our patients were diagnosed between ages 14 months and 36 years with elevated thymidine levels and biallelic pathogenic variants in TYMP. Two patients presented with progressive gastrointestinal dysmotility, and three demonstrated progressive peripheral neuropathy with two suffering limitations in ambulation. Two patients, including the child, had liver dysfunction and cirrhosis. Following LT, thymidine levels nearly normalized in all four patients and remained low for the duration of follow-up. Disease symptoms stabilized in all patients, with some manifesting improvements, including intestinal function. No patient died, and LT appeared to have a more favorable safety profile than HSCT, especially when liver disease is present. Follow-up studies will need to document the long-term impact of this new approach on disease outcome. Take Home Message: Liver transplantation is effective in stabilizing symptoms and nearly normalizing thymidine levels in patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and may have an improved safety profile over hematopoietic stem cell transplant.


Assuntos
Transplante de Fígado/métodos , Mitocôndrias/metabolismo , Encefalomiopatias Mitocondriais/terapia , Timidina Fosforilase/genética , Adolescente , Adulto , Transtornos da Motilidade Esofágica/genética , Feminino , Transplante de Células-Tronco Hematopoéticas/mortalidade , Humanos , Lactente , Transplante de Fígado/mortalidade , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Encefalomiopatias Mitocondriais/diagnóstico por imagem , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/fisiopatologia , Doenças do Sistema Nervoso Periférico/genética , Timidina/sangue , Sequenciamento do Exoma
5.
Curr Neurol Neurosci Rep ; 15(9): 59, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26198888

RESUMO

This review article focuses on the cognitive profile associated with the C9orf72 gene with GGGGCC (G4C2) hexanucleotide repeat expansions that is commonly found in both familial and sporadic forms of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) in order to aid clinicians in the screening process. In this growing clinical continuum between FTD and ALS, understanding and recognizing a neurocognitive profile is important for diagnosis. Key features of this profile include executive dysfunction with memory impairment and language deficits as the disease progresses. Behaviorally, patients are prone to disinhibition, apathy, and psychosis. With the discovery of this mutation, studies have begun to characterize the different phenotypes associated with this mutation in terms of epidemiology, clinical presentation, imaging, and pathology. Greater awareness and increased surveillance for this mutation will benefit patients and their families in terms of access to genetic counseling, research studies, and improved understanding of the disease process.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Cognição , Demência Frontotemporal/enzimologia , Proteínas/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Proteína C9orf72 , Demência Frontotemporal/genética , Demência Frontotemporal/fisiopatologia , Humanos , Mutação , Fenótipo , Proteínas/metabolismo
6.
Ann Clin Transl Neurol ; 11(3): 629-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311799

RESUMO

OBJECTIVE: ACTN2, encoding alpha-actinin-2, is essential for cardiac and skeletal muscle sarcomeric function. ACTN2 variants are a known cause of cardiomyopathy without skeletal muscle involvement. Recently, specific dominant monoallelic variants were reported as a rare cause of core myopathy of variable clinical onset, although the pathomechanism remains to be elucidated. The possibility of a recessively inherited ACTN2-myopathy has also been proposed in a single series. METHODS: We provide clinical, imaging, and histological characterization of a series of patients with a novel biallelic ACTN2 variant. RESULTS: We report seven patients from five families with a recurring biallelic variant in ACTN2: c.1516A>G (p.Arg506Gly), all manifesting with a consistent phenotype of asymmetric, progressive, proximal, and distal lower extremity predominant muscle weakness. None of the patients have cardiomyopathy or respiratory insufficiency. Notably, all patients report Palestinian ethnicity, suggesting a possible founder ACTN2 variant, which was confirmed through haplotype analysis in two families. Muscle biopsies reveal an underlying myopathic process with disruption of the intermyofibrillar architecture, Type I fiber predominance and atrophy. MRI of the lower extremities demonstrate a distinct pattern of asymmetric muscle involvement with selective involvement of the hamstrings and adductors in the thigh, and anterior tibial group and soleus in the lower leg. Using an in vitro splicing assay, we show that c.1516A>G ACTN2 does not impair normal splicing. INTERPRETATION: This series further establishes ACTN2 as a muscle disease gene, now also including variants with a recessive inheritance mode, and expands the clinical spectrum of actinopathies to adult-onset progressive muscle disease.


Assuntos
Cardiomiopatias , Doenças Musculares , Adulto , Humanos , Doenças Musculares/genética , Doenças Musculares/patologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Actinina/genética , Fenótipo
7.
Am J Hum Genet ; 86(3): 462-70, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20188345

RESUMO

Nonallelic homologous recombination (NAHR) can mediate recurrent rearrangements in the human genome and cause genomic disorders. Smith-Magenis syndrome (SMS) and Potocki-Lupski syndrome (PTLS) are genomic disorders associated with a 3.7 Mb deletion and its reciprocal duplication in 17p11.2, respectively. In addition to these common recurrent rearrangements, an uncommon recurrent 5 Mb SMS-associated deletion has been identified. However, its reciprocal duplication predicted by the NAHR mechanism had not been identified. Here we report the molecular assays on 74 subjects with PTLS-associated duplications, 35 of whom are newly investigated. By both oligonucleotide-based comparative genomic hybridization and recombination hot spot analyses, we identified two cases of the predicted 5 Mb uncommon recurrent PTLS-associated duplication. Interestingly, the crossovers occur in proximity to a recently delineated allelic homologous recombination (AHR) hot spot-associated sequence motif, further documenting the common hot spot features shared between NAHR and AHR. An additional eight subjects with nonrecurrent PTLS duplications were identified. The smallest region of overlap (SRO) for all of the 74 PTLS duplications examined is narrowed to a 125 kb interval containing only RAI1, a gene recently further implicated in autism. Sequence complexities consistent with DNA replication-based mechanisms were identified in four of eight (50%) newly identified nonrecurrent PTLS duplications. Our findings of the uncommon recurrent PTLS-associated duplication at a relative prevalence reflecting the de novo mutation rate and the distribution of 17p11.2 duplication types in PTLS reveal insights into both the contributions of new mutations and the different underlying mechanisms that generate genomic rearrangements causing genomic disorders.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 17/genética , Duplicações Segmentares Genômicas , Adulto , Sequência de Bases , Criança , Transtornos do Comportamento Infantil/genética , Pré-Escolar , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/genética , Fácies , Feminino , Rearranjo Gênico , Instabilidade Genômica , Humanos , Masculino , Modelos Genéticos , Fenótipo , Recombinação Genética , Deleção de Sequência , Síndrome
8.
Artigo em Inglês | MEDLINE | ID: mdl-38083393

RESUMO

Myotonic dystrophy type 1 (DM1) is a genetic neuromuscular progressive multisystem disease that results in a broad spectrum of clinical central nervous system (CNS) involvement, including problems with memory, attention, executive functioning, and social cognition. Fractional anisotropy and mean diffusivity along-tract data calculated using diffusion tensor imaging techniques play a vital role in assessing white matter microstructural changes associated with neurodegeneration caused by DM1. In this work, a novel spectrogram-based deep learning method is proposed to characterize white matter network alterations in DM1 with the goal of building a deep learning model as neuroimaging biomarkers of DM1. The proposed method is evaluated on fractional anisotropies and mean diffusivities along-tract data calculated for 25 major white matter tracts of 46 DM1 patients and 96 unaffected controls. The evaluation data consists of a total of 7100 spectrogram images. The model achieved 91% accuracy in identifying DM1, a significant improvement compared to previous methods.Clinical relevance- Clinical care of DM1 is particularly challenging due to DM1 multisystem involvement and the disease variability. Patients with DM1 often experience neurological and psychological symptoms, such as excessive sleepiness and apathy, that greatly impact their quality of life. Some of DM1 CNS symptoms may be responsive to treatment. The goal of this research is to gain a deeper understanding of the impact of DM1 on the CNS and to develop a deep learning model that can serve as a biomarker for the disease, with the potential to be used in future clinical trials as an outcome measure.


Assuntos
Distrofia Miotônica , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Distrofia Miotônica/diagnóstico por imagem , Distrofia Miotônica/complicações , Distrofia Miotônica/psicologia , Imagem de Tensor de Difusão , Anisotropia , Qualidade de Vida , Neuroimagem
9.
J Clin Med ; 12(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37892834

RESUMO

Disease-modifying treatments have transformed the natural history of spinal muscular atrophy (SMA), but the cellular pathways altered by SMN restoration remain undefined and biomarkers cannot yet precisely predict treatment response. We performed an exploratory cerebrospinal fluid (CSF) proteomic study in a diverse sample of SMA patients treated with nusinersen to elucidate therapeutic pathways and identify predictors of motor improvement. Proteomic analyses were performed on CSF samples collected before treatment (T0) and at 6 months (T6) using an Olink panel to quantify 1113 peptides. A supervised machine learning approach was used to identify proteins that discriminated patients who improved functionally from those who did not after 2 years of treatment. A total of 49 SMA patients were included (10 type 1, 18 type 2, and 21 type 3), ranging in age from 3 months to 65 years. Most proteins showed a decrease in CSF concentration at T6. The machine learning algorithm identified ARSB, ENTPD2, NEFL, and IFI30 as the proteins most predictive of improvement. The machine learning model was able to predict motor improvement at 2 years with 79.6% accuracy. The results highlight the potential application of CSF biomarkers to predict motor improvement following SMA treatment. Validation in larger datasets is needed.

11.
Orphanet J Rare Dis ; 17(1): 79, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197080

RESUMO

BACKGROUND: Myotonic dystrophy (DM) is a rare, inherited disorder with multi-systemic effects that impact the skeletal muscles, eyes, heart, skin and gastrointestinal, endocrine, respiratory, and central nervous systems. DM is divided into two subtypes: DM1 can present from early childhood through adulthood and also has a congenital form (cDM) while DM2 typically manifests during mid-adulthood. Both forms are progressive with no approved treatments, and unmet need for disease-modifying therapies remains high. This study interrogated health insurance claims data to explore the clinical experience, healthcare resource utilization (HCRU), and all-cause costs for DM. RESULTS: A total of 8541 patients with DM and 242 patients with cDM and their matched controls were selected from a database of over 200 million claimants. HCRU and all-cause costs, including pharmacy, outpatient, and inpatient services, were analyzed across four years in 12-month follow-up periods. Mean all-cause costs per DM patient were high in each of the four periods (range $14,640-$16,704) and showed a steady increase from 13 to 23 months on, while the control group mean costs declined from $9671 in the first 12 months after the index event, to approach the US population average ($5193) over time. For cDM, the highest mean costs were in the first 12-months ($66,496 vs. $2818 for controls), and remained high (above $17,944) across all subsequent periods, while control mean costs approached $0. For DM and cDM, HCRU was higher compared to controls across all study periods and all-cause healthcare costs were mostly driven by inpatient and outpatient encounters. Analysis of all diagnosis codes over the study period (comorbidities) demonstrated an elevated comorbidity profile consistent with the clinical profile of DM. CONCLUSIONS: This study is among the first to utilize claims data to increase understanding of the clinical experience and health economic outcomes associated with DM. The markedly elevated HCRU patterns and comorbidity profile presented here add to the broad body of scientific and clinical knowledge on DM. These insights can inform clinical care and support the development of disease modifying and/or symptom-targeting therapies that address the multi-systemic, progressive nature of DM.


Assuntos
Distrofia Miotônica , Adulto , Pré-Escolar , Comorbidade , Atenção à Saúde , Custos de Cuidados de Saúde , Humanos , Seguro Saúde , Estudos Retrospectivos
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4377-4382, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086274

RESUMO

The myotonic dystrophies (DM1 and DM2) are dominantly inherited disorders that cause pathological changes throughout the body. Many individuals with DM experience cognitive, behavioral and other functional central nervous system effects that impact their quality of life. The extent of psychological impairment that will develop in each patient is variable and unpredictable. Hence, it is difficult to get strong supervision information like fully ground truth labels for all cognitive involvement patterns. This study is to assess cognitive involvement among healthy controls and patients with DM. The DM cognitive impairment pattern observation is modeled in a weakly supervised setting and supervision information is used to transform the input feature space to a more discriminative representation suitable for pattern observation. This study incorporated results from 59 adults with DM and 92 control subjects. The developed system categorized the neuropsychological testing data into five cognitive clusters. The quality of the obtained clustering solution was assessed using an internal validity metric. The experimental results show that the proposed algorithm can discover interesting patterns and useful information from neuropsychological data, which will be be crucial in planning clinical trials and monitoring clinical performance. The proposed system resulted in an average classification accuracy of 88%, which is very promising considering the unique challenges present in this population.


Assuntos
Disfunção Cognitiva , Distrofia Miotônica , Adulto , Análise por Conglomerados , Disfunção Cognitiva/diagnóstico , Humanos , Distrofia Miotônica/diagnóstico , Distrofia Miotônica/patologia , Testes Neuropsicológicos , Qualidade de Vida
13.
Hum Mutat ; 32(3): 299-308, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21972111

RESUMO

Nonsense mutations are usually predicted to function as null alleles due to premature termination of protein translation. However, nonsense mutations in the DMD gene, encoding the dystrophin protein, have been associated with both the severe Duchenne Muscular Dystrophy (DMD) and milder Becker Muscular Dystrophy (BMD) phenotypes. In a large survey, we identified 243 unique nonsense mutations in the DMD gene, and for 210 of these we could establish definitive phenotypes. We analyzed the reading frame predicted by exons flanking those in which nonsense mutations were found, and present evidence that nonsense mutations resulting in BMD likely do so by inducing exon skipping, confirming that exonic point mutations affecting exon definition have played a significant role in determining phenotype. We present a new model based on the combination of exon definition and intronic splicing regulatory elements for the selective association of BMD nonsense mutations with a subset of DMD exons prone to mutation-induced exon skipping.


Assuntos
Códon sem Sentido , Distrofina/genética , Éxons , Distrofia Muscular de Duchenne/genética , Splicing de RNA , Feminino , Humanos , Masculino , Distrofia Muscular de Duchenne/metabolismo , Fenótipo , Splicing de RNA/genética
14.
Cell Rep ; 34(3): 108634, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472074

RESUMO

Myotonic dystrophy (DM) is caused by expanded CTG/CCTG repeats, causing symptoms in skeletal muscle, heart, and central nervous system (CNS). CNS issues are debilitating and include hypersomnolence, executive dysfunction, white matter atrophy, and neurofibrillary tangles. Here, we generate RNA-seq transcriptomes from DM and unaffected frontal cortex and identify 130 high-confidence splicing changes, most occurring only in cortex, not skeletal muscle or heart. Mis-spliced exons occur in neurotransmitter receptors, ion channels, and synaptic scaffolds, and GRIP1 mis-splicing modulates kinesin association. Optical mapping of expanded CTG repeats reveals extreme mosaicism, with some alleles showing >1,000 CTGs. Mis-splicing severity correlates with CTG repeat length across individuals. Upregulated genes tend to be microglial and endothelial, suggesting neuroinflammation, and downregulated genes tend to be neuronal. Many gene expression changes strongly correlate with mis-splicing, suggesting candidate biomarkers of disease. These findings provide a framework for mechanistic and therapeutic studies of the DM CNS.


Assuntos
Lobo Frontal/fisiopatologia , Distrofia Miotônica/genética , Transcriptoma/genética , Humanos
15.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34291734

RESUMO

Mutations in HNRNPA1 encoding heterogeneous nuclear ribonucleoprotein (hnRNP) A1 are a rare cause of amyotrophic lateral sclerosis (ALS) and multisystem proteinopathy (MSP). hnRNPA1 is part of the group of RNA-binding proteins (RBPs) that assemble with RNA to form RNPs. hnRNPs are concentrated in the nucleus and function in pre-mRNA splicing, mRNA stability, and the regulation of transcription and translation. During stress, hnRNPs, mRNA, and other RBPs condense in the cytoplasm to form stress granules (SGs). SGs are implicated in the pathogenesis of (neuro-)degenerative diseases, including ALS and inclusion body myopathy (IBM). Mutations in RBPs that affect SG biology, including FUS, TDP-43, hnRNPA1, hnRNPA2B1, and TIA1, underlie ALS, IBM, and other neurodegenerative diseases. Here, we characterize 4 potentially novel HNRNPA1 mutations (yielding 3 protein variants: *321Eext*6, *321Qext*6, and G304Nfs*3) and 2 known HNRNPA1 mutations (P288A and D262V), previously connected to ALS and MSP, in a broad spectrum of patients with hereditary motor neuropathy, ALS, and myopathy. We establish that the mutations can have different effects on hnRNPA1 fibrillization, liquid-liquid phase separation, and SG dynamics. P288A accelerated fibrillization and decelerated SG disassembly, whereas *321Eext*6 had no effect on fibrillization but decelerated SG disassembly. By contrast, G304Nfs*3 decelerated fibrillization and impaired liquid phase separation. Our findings suggest different underlying pathomechanisms for HNRNPA1 mutations with a possible link to clinical phenotypes.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ribonucleoproteína Nuclear Heterogênea A1/genética , Atrofia Muscular Espinal/genética , Adolescente , Adulto , Criança , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Grânulos de Estresse/metabolismo , Sequenciamento do Exoma , Adulto Jovem
16.
J Comp Eff Res ; 9(14): 973-984, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32851872

RESUMO

Aim: Assess the totality of efficacy evidence for ataluren in patients with nonsense mutation Duchenne muscular dystrophy (nmDMD). Materials & methods: Data from the two completed randomized controlled trials (ClinicalTrials.gov: NCT00592553; NCT01826487) of ataluren in nmDMD were combined to examine the intent-to-treat (ITT) populations and two patient subgroups (baseline 6-min walk distance [6MWD] ≥300-<400 or <400 m). Meta-analyses examined 6MWD change from baseline to week 48. Results: Statistically significant differences in 6MWD change with ataluren versus placebo were observed across all three meta-analyses. Least-squares mean difference (95% CI): ITT (n = 342), +17.2 (0.2-34.1) m, p = 0.0473; ≥300-<400 m (n = 143), +43.9 (18.2-69.6) m, p = 0.0008; <400 m (n = 216), +27.7 (6.4-49.0) m, p = 0.0109. Conclusion: These meta-analyses support previous evidence for ataluren in slowing disease progression versus placebo in patients with nmDMD over 48 weeks. Treatment benefit was most evident in patients with a baseline 6MWD ≥300-<400 m (the ambulatory transition phase), thereby informing future trial design.


Assuntos
Códon sem Sentido/genética , Distrofia Muscular de Duchenne/tratamento farmacológico , Oxidiazóis/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Distrofia Muscular de Duchenne/genética
17.
Hum Mutat ; 30(12): 1657-66, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19937601

RESUMO

Mutations in the DMD gene, encoding the dystrophin protein, are responsible for the dystrophinopathies Duchenne Muscular Dystrophy (DMD), Becker Muscular Dystrophy (BMD), and X-linked Dilated Cardiomyopathy (XLDC). Mutation analysis has traditionally been challenging, due to the large gene size (79 exons over 2.2 Mb of genomic DNA). We report a very large aggregate data set comprised of DMD mutations detected in samples from patients enrolled in the United Dystrophinopathy Project, a multicenter research consortium, and in referral samples submitted for mutation analysis with a diagnosis of dystrophinopathy. We report 1,111 mutations in the DMD gene, including 891 mutations with associated phenotypes. These results encompass 506 point mutations (including 294 nonsense mutations) and significantly expand the number of mutations associated with the dystrophinopathies, highlighting the utility of modern diagnostic techniques. Our data supports the uniform hypermutability of CGA>TGA mutations, establishes the frequency of polymorphic muscle (Dp427m) protein isoforms and reveals unique genomic haplotypes associated with "private" mutations. We note that 60% of these patients would be predicted to benefit from skipping of a single DMD exon using antisense oligonucleotide therapy, and 62% would be predicted to benefit from an inclusive multiexonskipping approach directed toward exons 45 through 55.


Assuntos
Técnicas e Procedimentos Diagnósticos , Distrofina/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Mutação/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Estudos de Coortes , Distrofina/química , Éxons/genética , Haplótipos/genética , Humanos , Dados de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
19.
Neuromuscul Disord ; 16(6): 391-3, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16697198

RESUMO

We present a case of juvenile dermatomyositis with unusual histopathologic findings. The child presented with a course consistent with dermatomyositis, a diagnosis confirmed by finding reticulotubular aggregates in endothelial cells on electron microscopy. However, histopathology of his muscle biopsy revealed a striking pattern of glycogen accumulation, to an extent similar to that seen in glycogen storage diseases; this degree of accumulation could potentially confound histopathologic diagnosis.


Assuntos
Dermatomiosite/patologia , Glicogênio/metabolismo , Músculo Esquelético/química , Músculo Esquelético/patologia , Biópsia , Pré-Escolar , Dermatomiosite/diagnóstico , Diagnóstico Diferencial , Endotélio/patologia , Endotélio/ultraestrutura , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/patologia , Histocitoquímica , Humanos , Masculino , Formação Reticular/patologia , Formação Reticular/ultraestrutura
20.
Orphanet J Rare Dis ; 10: 135, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26471370

RESUMO

BACKGROUND: Hereditary Fibrosing Poikiloderma (HFP) with tendon contractures, myopathy and pulmonary fibrosis (POIKTMP [MIM 615704]) is a very recently described entity of syndromic inherited poikiloderma. Previously by using whole exome sequencing in five families, we identified the causative gene, FAM111B (NM_198947.3), the function of which is still unknown. Our objective in this study was to better define the specific features of POIKTMP through a larger series of patients. METHODS: Clinical and molecular data of two families and eight independent sporadic cases, including six new cases, were collected. RESULTS: Key features consist of: (i) early-onset poikiloderma, hypotrichosis and hypohidrosis; (ii) multiple contractures, in particular triceps surae muscle contractures; (iii) diffuse progressive muscular weakness; (iv) pulmonary fibrosis in adulthood and (v) other features including exocrine pancreatic insufficiency, liver impairment and growth retardation. Muscle magnetic resonance imaging was informative and showed muscle atrophy and fatty infiltration. Histological examination of skeletal muscle revealed extensive fibroadipose tissue infiltration. Microscopy of the skin showed a scleroderma-like aspect with fibrosis and alterations of the elastic network. FAM111B gene analysis identified five different missense variants (two recurrent mutations were found respectively in three and four independent families). All the mutations were predicted to localize in the trypsin-like cysteine/serine peptidase domain of the protein. We suggest gain-of-function or dominant-negative mutations resulting in FAM111B enzymatic activity changes. CONCLUSIONS: HFP with tendon contractures, myopathy and pulmonary fibrosis, is a multisystemic disorder due to autosomal dominant FAM111B mutations. Future functional studies will help in understanding the specific pathological process of this fibrosing disorder.


Assuntos
Proteínas de Ciclo Celular/genética , Contratura/genética , Doenças Musculares/genética , Fibrose Pulmonar/genética , Esclerose/genética , Anormalidades da Pele/genética , Dermatopatias Genéticas/genética , Tendões/patologia , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Contratura/complicações , Contratura/diagnóstico , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Doenças Musculares/complicações , Doenças Musculares/diagnóstico , Mutação/genética , Fibrose Pulmonar/complicações , Fibrose Pulmonar/diagnóstico , Esclerose/complicações , Esclerose/diagnóstico , Anormalidades da Pele/complicações , Anormalidades da Pele/diagnóstico , Dermatopatias Genéticas/complicações , Dermatopatias Genéticas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA