Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(D1): D575-D588, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32986834

RESUMO

For over 10 years, ModelSEED has been a primary resource for the construction of draft genome-scale metabolic models based on annotated microbial or plant genomes. Now being released, the biochemistry database serves as the foundation of biochemical data underlying ModelSEED and KBase. The biochemistry database embodies several properties that, taken together, distinguish it from other published biochemistry resources by: (i) including compartmentalization, transport reactions, charged molecules and proton balancing on reactions; (ii) being extensible by the user community, with all data stored in GitHub; and (iii) design as a biochemical 'Rosetta Stone' to facilitate comparison and integration of annotations from many different tools and databases. The database was constructed by combining chemical data from many resources, applying standard transformations, identifying redundancies and computing thermodynamic properties. The ModelSEED biochemistry is continually tested using flux balance analysis to ensure the biochemical network is modeling-ready and capable of simulating diverse phenotypes. Ontologies can be designed to aid in comparing and reconciling metabolic reconstructions that differ in how they represent various metabolic pathways. ModelSEED now includes 33,978 compounds and 36,645 reactions, available as a set of extensible files on GitHub, and available to search at https://modelseed.org/biochem and KBase.


Assuntos
Bactérias/metabolismo , Bases de Dados Factuais , Fungos/metabolismo , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Plantas/metabolismo , Bactérias/genética , Genoma Bacteriano , Termodinâmica
2.
Plant J ; 95(6): 1102-1113, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29924895

RESUMO

Genome-scale metabolic reconstructions help us to understand and engineer metabolism. Next-generation sequencing technologies are delivering genomes and transcriptomes for an ever-widening range of plants. While such omic data can, in principle, be used to compare metabolic reconstructions in different species, organs and environmental conditions, these comparisons require a standardized framework for the reconstruction of metabolic networks from transcript data. We previously introduced PlantSEED as a framework covering primary metabolism for 10 species. We have now expanded PlantSEED to include 39 species and provide tools that enable automated annotation and metabolic reconstruction from transcriptome data. The algorithm for automated annotation in PlantSEED propagates annotations using a set of signature k-mers (short amino acid sequences characteristic of particular proteins) that identify metabolic enzymes with an accuracy of about 97%. PlantSEED reconstructions are built from a curated template that includes consistent compartmentalization for more than 100 primary metabolic subsystems. Together, the annotation and reconstruction algorithms produce reconstructions without gaps and with more accurate compartmentalization than existing resources. These tools are available via the PlantSEED web interface at http://modelseed.org, which enables users to upload, annotate and reconstruct from private transcript data and simulate metabolic activity under various conditions using flux balance analysis. We demonstrate the ability to compare these metabolic reconstructions with a case study involving growth on several nitrogen sources in roots of four species.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Metabolômica/métodos , Plantas/metabolismo , Algoritmos , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas , Plantas/genética , Transcriptoma
3.
Bioinformatics ; 34(24): 4318-4320, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29931314

RESUMO

Summary: Each cell is a phenotypically unique individual that is influenced by internal and external processes, operating in parallel. To characterize the dynamics of cellular processes one needs to observe many individual cells from multiple points of view and over time, so as to identify commonalities and variability. With this aim, we engineered a software, 'SCIP', to analyze multi-modal, multi-process, time-lapse microscopy morphological and functional images. SCIP is capable of automatic and/or manually corrected segmentation of cells and lineages, automatic alignment of different microscopy channels, as well as detect, count and characterize fluorescent spots (such as RNA tagged by MS2-GFP), nucleoids, Z rings, Min system, inclusion bodies, undefined structures, etc. The results can be exported into *mat files and all results can be jointly analyzed, to allow studying not only each feature and process individually, but also find potential relationships. While we exemplify its use on Escherichia coli, many of its functionalities are expected to be of use in analyzing other prokaryotes and eukaryotic cells as well. We expect SCIP to facilitate the finding of relationships between cellular processes, from small-scale (e.g. gene expression) to large-scale (e.g. cell division), in single cells and cell lineages. Availability and implementation: http://www.ca3-uninova.org/project_scip. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia , Análise de Célula Única/métodos , Software , Divisão Celular , Linhagem da Célula
4.
Phys Biol ; 15(5): 056002, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29717708

RESUMO

Cell division in Escherichia coli is morphologically symmetric due to, among other things, the ability of these cells to place the Z-ring at midcell. Studies have reported that, at sub-optimal temperatures, this symmetry decreases at the single-cell level, but the causes remain unclear. Using fluorescence microscopy, we observe FtsZ-GFP and DAPI-stained nucleoids to assess the robustness of the symmetry of Z-ring formation and positioning in individual cells under sub-optimal and critical temperatures. We find the Z-ring formation and positioning to be robust at sub-optimal temperatures, as the Z-ring's mean width, density and displacement from midcell maintain similar levels of correlation to one another as at optimal temperatures. However, at critical temperatures, the Z-ring displacement from midcell is greatly increased. We present evidence showing that this is due to enhanced distance between the replicated nucleoids and, thus, reduced Z-ring density, which explains the weaker precision in setting a morphologically symmetric division site. This also occurs in rich media and is cumulative, i.e. combining richer media and critically high temperatures enhances the asymmetries in division, which is evidence that the causes are biophysical. To further support this, we show that the effects are reversible, i.e. shifting cells from optimal to critical, and then to optimal again, reduces and then enhances the symmetry in Z-ring positioning, respectively, as the width and density of the Z-ring return to normal values. Overall, our findings show that the Z-ring positioning in E. coli is a robust biophysical process under sub-optimal temperatures, and that critical temperatures cause significant asymmetries in division.


Assuntos
Proteínas de Bactérias/análise , Proteínas do Citoesqueleto/análise , Escherichia coli/citologia , Proteínas de Bactérias/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Microscopia de Fluorescência , Análise de Célula Única , Temperatura
5.
Phys Biol ; 15(2): 026007, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29182518

RESUMO

From in vivo single-cell, single-RNA measurements of the activation times and subsequent steady-state active transcription kinetics of a single-copy Lac-ara-1 promoter in Escherichia coli, we characterize the intake kinetics of the inducer (IPTG) from the media, following temperature shifts. For this, for temperature shifts of various degrees, we obtain the distributions of transcription activation times as well as the distributions of intervals between consecutive RNA productions following activation in individual cells. We then propose a novel methodology that makes use of deconvolution techniques to extract the mean and the variability of the distribution of intake times. We find that cells, following shifts to low temperatures, have higher intake times, although, counter-intuitively, the cell-to-cell variability of these times is lower. We validate the results using a new methodology for direct estimation of mean intake times from measurements of activation times at various inducer concentrations. The results confirm that E. coli's inducer intake times from the environment are significantly higher following a shift to a sub-optimal temperature. Finally, we provide evidence that this is likely due to the emergence of additional rate-limiting steps in the intake process at low temperatures, explaining the reduced cell-to-cell variability in intake times.


Assuntos
Escherichia coli/genética , Análise de Célula Única , Temperatura , Ativação Transcricional , Cinética
7.
Mol Microbiol ; 99(4): 686-99, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26507787

RESUMO

In Escherichia coli, under optimal conditions, protein aggregates associated with cellular aging are excluded from midcell by the nucleoid. We study the functionality of this process under sub-optimal temperatures from population and time lapse images of individual cells and aggregates and nucleoids within. We show that, as temperature decreases, aggregates become homogeneously distributed and uncorrelated with nucleoid size and location. We present evidence that this is due to increased cytoplasm viscosity, which weakens the anisotropy in aggregate displacements at the nucleoid borders that is responsible for their preference for polar localisation. Next, we show that in plasmolysed cells, which have increased cytoplasm viscosity, aggregates are also not preferentially located at the poles. Finally, we show that the inability of cells with increased viscosity to exclude aggregates from midcell results in enhanced aggregate concentration in between the nucleoids in cells close to dividing. This weakens the asymmetries in aggregate numbers between sister cells of subsequent generations required for rejuvenating cell lineages. We conclude that the process of exclusion of protein aggregates from midcell is not immune to stress conditions affecting the cytoplasm viscosity. The findings contribute to our understanding of E. coli's internal organisation and functioning, and its fragility to stressful conditions.


Assuntos
Citoplasma/química , Citoplasma/metabolismo , Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Divisão Celular , Organelas/metabolismo , Agregados Proteicos , Estresse Fisiológico , Temperatura , Viscosidade
9.
PLoS Comput Biol ; 12(10): e1005174, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27792724

RESUMO

Transcription kinetics is limited by its initiation steps, which differ between promoters and with intra- and extracellular conditions. Regulation of these steps allows tuning both the rate and stochasticity of RNA production. We used time-lapse, single-RNA microscopy measurements in live Escherichia coli to study how the rate-limiting steps in initiation of the Plac/ara-1 promoter change with temperature and induction scheme. For this, we compared detailed stochastic models fit to the empirical data in maximum likelihood sense using statistical methods. Using this analysis, we found that temperature affects the rate limiting steps unequally, as nonlinear changes in the closed complex formation suffice to explain the differences in transcription dynamics between conditions. Meanwhile, a similar analysis of the PtetA promoter revealed that it has a different rate limiting step configuration, with temperature regulating different steps. Finally, we used the derived models to explore a possible cause for why the identified steps are preferred as the main cause for behavior modifications with temperature: we find that transcription dynamics is either insensitive or responds reciprocally to changes in the other steps. Our results suggests that different promoters employ different rate limiting step patterns that control not only their rate and variability, but also their sensitivity to environmental changes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Modelos Biológicos , Temperatura , Transcrição Gênica/fisiologia , Ativação Transcricional/fisiologia , Simulação por Computador , Modelos Estatísticos , Regiões Promotoras Genéticas/fisiologia , Sítio de Iniciação de Transcrição/fisiologia
10.
Proc Natl Acad Sci U S A ; 111(26): 9645-50, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24927599

RESUMO

The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular/métodos , Plantas/genética , Software , Redes e Vias Metabólicas/genética , Modelos Biológicos , Plantas/metabolismo , Biologia de Sistemas/métodos
11.
Nucleic Acids Res ; 41(13): 6544-52, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23644285

RESUMO

Using a single-RNA detection technique in live Escherichia coli cells, we measure, for each cell, the waiting time for the production of the first RNA under the control of PBAD promoter after induction by arabinose, and subsequent intervals between transcription events. We find that the kinetics of the arabinose intake system affect mean and diversity in RNA numbers, long after induction. We observed the same effect on Plac/ara-1 promoter, which is inducible by arabinose or by IPTG. Importantly, the distribution of waiting times of Plac/ara-1 is indistinguishable from that of PBAD, if and only if induced by arabinose alone. Finally, RNA production under the control of PBAD is found to be a sub-Poissonian process. We conclude that inducer-dependent waiting times affect mean and cell-to-cell diversity in RNA numbers long after induction, suggesting that intake mechanisms have non-negligible effects on the phenotypic diversity of cell populations in natural, fluctuating environments.


Assuntos
Arabinose/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , RNA Bacteriano/biossíntese , Ativação Transcricional , Escherichia coli/metabolismo , Cinética , Iniciação da Transcrição Genética
12.
Biophys J ; 106(9): 1928-37, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24806925

RESUMO

The cytoplasm of Escherichia coli is a crowded, heterogeneous environment. From single cell live imaging, we investigated the spatial kinetics and heterogeneities of synthetic RNA-protein complexes. First, although their known tendency to accumulate at the cell poles does not appear to introduce asymmetries between older and newer cell poles within a cell lifetime, these emerge with cell divisions. This suggests strong polar retention of the complexes, which we verified in their history of positions and mean escape time from the poles. Next, we show that the polar retention relies on anisotropies in the displacement distribution in the region between midcell and poles, whereas the speed is homogeneous along the major cell axis. Afterward, we establish that these regions are at the border of the nucleoid and shift outward with cell growth, due to the nucleoid's replication. Overall, the spatiotemporal kinetics of the complexes, which is robust to suboptimal temperatures, suggests that nucleoid occlusion is a source of dynamic heterogeneities of macromolecules in E. coli that ultimately generate phenotypic differences between sister cells.


Assuntos
Proteínas do Capsídeo/metabolismo , Escherichia coli/citologia , RNA/metabolismo , Cinética , Modelos Biológicos , Ligação Proteica
13.
Phys Biol ; 11(6): 066005, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25382420

RESUMO

The morphological symmetry of the division process of Escherichia coli is well-known. Recent studies verified that, in optimal growth conditions, most divisions are symmetric, although there are exceptions. We investigate whether such morphological asymmetries in division introduce functional asymmetries between sister cells, and assess the robustness of the symmetry in division to mild chemical stresses and sub-optimal temperatures. First, we show that the difference in size between daughter cells at birth is positively correlated to the difference between the numbers of fluorescent protein complexes inherited from the parent cell. Next, we show that the degree of symmetry in division observed in optimal conditions is robust to mild acidic shift and to mild oxidative stress, but not to sub-optimal temperatures, in that the variance of the difference between the sizes of sister cells at birth is minimized at 37 °C. This increased variance affects the functionality of the cells in that, at sub-optimal temperatures, larger/smaller cells arising from asymmetric divisions exhibit faster/slower division times than the mean population division time, respectively. On the other hand, cells dividing faster do not do so at the cost of morphological symmetry in division. Finally we show that at suboptimal temperatures the mean distance between the nucleoids increases, explaining the increased variance in division. We conclude that the functionality of E. coli cells is not immune to morphological asymmetries at birth, and that the effectiveness of the mechanism responsible for ensuring the symmetry in division weakens at sub-optimal temperatures.


Assuntos
Divisão Celular/fisiologia , Escherichia coli/citologia , Modelos Biológicos , Estresse Fisiológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Peróxido de Hidrogênio/farmacologia , Cinética , Microscopia Confocal , Proteínas Recombinantes de Fusão/genética , Temperatura , Imagem com Lapso de Tempo
14.
mSystems ; 9(6): e0006524, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38687030

RESUMO

The topology of the transcription factor network (TFN) of Escherichia coli is far from uniform, with 22 global regulator (GR) proteins controlling one-third of all genes. So far, their production rates cannot be tracked by comparable fluorescent proteins. We developed a library of fluorescent reporters for 16 GRs for this purpose. Each consists of a single-copy plasmid coding for green fluorescent protein (GFP) fused to the full-length copy of the native promoter. We tracked their activity in exponential and stationary growth, as well as under weak and strong stresses. We show that the reporters have high sensitivity and specificity to all stresses tested and detect single-cell variability in transcription rates. Given the influence of GRs on the TFN, we expect that the new library will contribute to dissecting global transcriptional stress-response programs of E. coli. Moreover, the library can be invaluable in bioindustrial applications that tune those programs to, instead of cell growth, favor productivity while reducing energy consumption.IMPORTANCECells contain thousands of genes. Many genes are involved in the control of cellular activities. Some activities require a few hundred genes to run largely synchronous transcriptional programs. To achieve this, cells have evolved global regulator (GR) proteins that can influence hundreds of genes simultaneously. We have engineered a library of Escherichia coli strains to track the levels over time of these, phenotypically critical, GRs. Each strain has a single-copy plasmid coding for a fast-maturing green fluorescent protein whose transcription is controlled by a copy of the natural GR promoter. By allowing the tracking of GR levels, with sensitivity and specificity, this library should become of wide use in scientific research on bacterial gene expression (from molecular to synthetic biology) and, later, be used in applications in therapeutics and bioindustries.


Assuntos
Escherichia coli , Regulação Bacteriana da Expressão Gênica , Biblioteca Gênica , Genes Reporter , Proteínas de Fluorescência Verde , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas/genética
15.
PLoS Comput Biol ; 8(11): e1002762, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133365

RESUMO

The ability of microbial species to consume compounds found in the environment to generate commercially-valuable products has long been exploited by humanity. The untapped, staggering diversity of microbial organisms offers a wealth of potential resources for tackling medical, environmental, and energy challenges. Understanding microbial metabolism will be crucial to many of these potential applications. Thermodynamically-feasible metabolic reconstructions can be used, under some conditions, to predict the growth rate of certain microbes using constraint-based methods. While these reconstructions are powerful, they are still cumbersome to build and, because of the complexity of metabolic networks, it is hard for researchers to gain from these reconstructions an understanding of why a certain nutrient yields a given growth rate for a given microbe. Here, we present a simple model of biomass production that accurately reproduces the predictions of thermodynamically-feasible metabolic reconstructions. Our model makes use of only: i) a nutrient's structure and function, ii) the presence of a small number of enzymes in the organism, and iii) the carbon flow in pathways that catabolize nutrients. When applied to test organisms, our model allows us to predict whether a nutrient can be a carbon source with an accuracy of about 90% with respect to in silico experiments. In addition, our model provides excellent predictions of whether a medium will produce more or less growth than another (p<10(-6)) and good predictions of the actual value of the in silico biomass production.


Assuntos
Bactérias/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas/métodos , Biomassa , Carbono/metabolismo , Ciclo do Carbono , Simulação por Computador , Metabolismo , Reprodutibilidade dos Testes
16.
J Exp Bot ; 63(6): 2247-58, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22238452

RESUMO

A major goal of post-genomic biology is to reconstruct and model in silico the metabolic networks of entire organisms. Work on bacteria is well advanced, and is now under way for plants and other eukaryotes. Genome-scale modelling in plants is much more challenging than in bacteria. The challenges come from features characteristic of higher organisms (subcellular compartmentation, tissue differentiation) and also from the particular severity in plants of a general problem: genome content whose functions remain undiscovered. This problem results in thousands of genes for which no function is known ('undiscovered genome content') and hundreds of enzymatic and transport functions for which no gene is yet identified. The severity of the undiscovered genome content problem in plants reflects their genome size and complexity. To bring the challenges of plant genome-scale modelling into focus, we first summarize the current status of plant genome-scale models. We then highlight the challenges - and ways to address them - in three areas: identifying genes for missing processes, modelling tissues as opposed to single cells, and finding metabolic functions encoded by undiscovered genome content. We also discuss the emerging view that a significant fraction of undiscovered genome content encodes functions that counter damage to metabolites inflicted by spontaneous chemical reactions or enzymatic mistakes.


Assuntos
Genoma de Planta/genética , Genômica , Redes e Vias Metabólicas , Plantas/genética , Plantas/metabolismo , Modelos Genéticos
17.
J Exp Bot ; 63(15): 5379-95, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22915736

RESUMO

The B vitamins and the cofactors derived from them are essential for life. B vitamin synthesis in plants is consequently as crucial to plants themselves as it is to humans and animals, whose B vitamin nutrition depends largely on plants. The synthesis and salvage pathways for the seven plant B vitamins are now broadly known, but certain enzymes and many transporters have yet to be identified, and the subcellular locations of various reactions are unclear. Although very substantial, what is not known about plant B vitamin pathways is regrettably difficult to discern from the literature or from biochemical pathway databases. Nor do databases accurately represent all that is known about B vitamin pathways-above all their compartmentation-because the facts are scattered throughout the literature, and thus hard to piece together. These problems (i) deter discoveries because newcomers to B vitamins cannot see which mysteries still need solving; and (ii) impede metabolic reconstruction and modelling of B vitamin pathways because genes for reactions or transport steps are missing. This review therefore takes a fresh approach to capture current knowledge of B vitamin pathways in plants. The synthesis pathways, key salvage routes, and their subcellular compartmentation are surveyed in depth, and encoded in the SEED database (http://pubseed.theseed.org/seedviewer.cgi?page=PlantGateway) for Arabidopsis and maize. The review itself and the encoded pathways specifically identify enigmatic or missing reactions, enzymes, and transporters. The SEED-encoded B vitamin pathway collection is a publicly available, expertly curated, one-stop resource for metabolic reconstruction and modeling.


Assuntos
Bases de Dados Factuais , Plantas/metabolismo , Complexo Vitamínico B/biossíntese , Redes e Vias Metabólicas , Proteínas de Plantas/metabolismo , Plantas/enzimologia
18.
Curr Opin Plant Biol ; 68: 102244, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714443

RESUMO

Environmental challenges and development require plants to reallocate resources between primary and specialized metabolites to survive. Genome-scale metabolic models, which map carbon flux through metabolic pathways, are a valuable tool in the study of tradeoffs that arise at this interface. Due to annotation gaps, models that characterize all the enzymatic steps in individual specialized pathways and their linkages to each other and to central carbon metabolism are difficult to construct. Recent studies have successfully curated subsystems of specialized metabolism and characterized the interfaces where flux is diverted to the precursors of glucosinolates, terpenes, and anthocyanins. Although advances in metabolite profiling can help to constrain models at this interface, quantitative analysis remains challenging because of the different timescales on which specialized metabolites from constitutive and reactive pathways accumulate.


Assuntos
Antocianinas , Redes e Vias Metabólicas , Antocianinas/metabolismo , Redes e Vias Metabólicas/genética , Modelos Biológicos , Plantas/genética , Plantas/metabolismo
19.
Biodes Res ; 2022: 9794510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850136

RESUMO

Synthetic biology is the process of forward engineering living systems. These systems can be used to produce biobased materials, agriculture, medicine, and energy. One approach to designing these systems is to employ techniques from the design of embedded electronics. These techniques include abstraction, standards, modularity, automated design, and formal semantic models of computation. Together, these elements form the foundation of "biodesign automation," where software, robotics, and microfluidic devices combine to create exciting biological systems of the future. This paper describes a "hardware, software, wetware" codesign vision where software tools can be made to act as "genetic compilers" that transform high-level specifications into engineered "genetic circuits" (wetware). This is followed by a process where automation equipment, well-defined experimental workflows, and microfluidic devices are explicitly designed to house, execute, and test these circuits (hardware). These systems can be used as either massively parallel experimental platforms or distributed bioremediation and biosensing devices. Next, scheduling and control algorithms (software) manage these systems' actual execution and data analysis tasks. A distinguishing feature of this approach is how all three of these aspects (hardware, software, and wetware) may be derived from the same basic specification in parallel and generated to fulfill specific cost, performance, and structural requirements.

20.
Nat Protoc ; 17(4): 1097-1113, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35197606

RESUMO

Cells interact with their environment, communicate among themselves, track time and make decisions through functions controlled by natural regulatory genetic circuits consisting of interacting biological components. Synthetic programmable circuits used in therapeutics and other applications can be automatically designed by computer-aided tools. The Cello software designs the DNA sequences for programmable circuits based on a high-level software description and a library of characterized DNA parts representing Boolean logic gates. This process allows for design specification reuse, modular DNA part library curation and formalized circuit transformations based on experimental data. This protocol describes Cello 2.0, a freely available cross-platform software written in Java. Cello 2.0 enables flexible descriptions of the logic gates' structure and their mathematical models representing dynamic behavior, new formal rules for describing the placement of gates in a genome, a new graphical user interface, support for Verilog 2005 syntax and a connection to the SynBioHub parts repository software environment. Collectively, these features expand Cello's capabilities beyond Escherichia coli plasmids to new organisms and broader genetic contexts, including the genome. Designing circuits with Cello 2.0 produces an abstract Boolean network from a Verilog file, assigns biological parts to each node in the Boolean network, constructs a DNA sequence and generates highly structured and annotated sequence representations suitable for downstream processing and fabrication, respectively. The result is a sequence implementing the specified Boolean function in the organism and predictions of circuit performance. Depending on the size of the design space and users' expertise, jobs may take minutes or hours to complete.


Assuntos
Redes Reguladoras de Genes , Software , Automação , DNA/genética , Escherichia coli/genética , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA