Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(5): 156, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592524

RESUMO

This study presents a facile preparation and durable amorphous Fe and Al-based MOF nanoplate (AlFe-BTC MOFs) catalyst with notable stability in Fenton reactions. Rigorous characterization using XRD, HR-TEM, and BET confirms the amorphous nature of the synthesized AlFe-BTC MOFs, revealing mesopores (3.4 nm diameter), a substantial surface area (232 m2/g), and a pore volume of 0.69 cc/g. XPS analysis delineates distinct Al2p and Fe2p binding energy values, signifying specific chemical bonding. FE-SEM elemental mapping elucidates the distinctive distribution of Fe and Al within the framework of AlFe-BTC MOFs. In catalytic activity testing, the amorphous AlFe-BTC MOFs exhibited outstanding performance, achieving complete degradation of Methylene blue (MB) dye and 78% TOC removal over 45 min of treatment under mild reaction conditions. The catalyst's durability was assessed, revealing about 75% TOC removal and complete dye decomposition over five successive recycles, with less than 1 mg/L of Fe and Al leaching. UV-Vis spectra revealed the destruction of MB dye over multiple recycling studies. Based on this finding, the amorphous AlFe-BTC MOF nanoplates emerge as a promising solution for efficient dye removal from industrial wastewater, underscoring their potential in advanced environmental remediation processes.


Assuntos
Recuperação e Remediação Ambiental , Estruturas Metalorgânicas , Indústrias , Ferro , Azul de Metileno
2.
Sci Total Environ ; 942: 173736, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38839010

RESUMO

Improved treatment of per- and polyfluoroalkyl substances (PFAS) in water is critically important in light of the proposed United States Environmental Protection Agency (USEPA) drinking water regulations at ng L-1 levels. The addition of peroxymonosulfate (PMS) during electrooxidation (EO) can remove and destroy PFAS, but ng L-1 levels have not been tested, and PMS itself can be toxic. The objective of this research was to test peroxydisulfate (PDS, an alternative to PMS) activation by boron-doped diamond (BDD) electrodes for perfluorooctanoic acid (PFOA) degradation. The influence of PDS concentration, temperature, and environmental water matrix effects, and PFOA concentration on PDS-EO performance were systematically examined. Batch reactor experiments revealed that 99 % of PFOA was degraded and 69 % defluorination was achieved, confirming PFOA mineralization. Scavenging experiments implied that sulfate radicals (SO4-) and hydroxyl radicals (HO) played a more important role for PFOA degradation than 1O2 or electrons (e-). Further identification of PFOA degradation and transformation products by liquid chromatography-mass spectrometry (LC-MS) analysis established plausible PFOA degradation pathways. The analysis corroborates that direct electron transfers at the electrode initiate PFOA oxidation and SO4- improves overall treatment by cleaving the CC bond between the C7F15 and COOH moieties in PFOA, leading to possible products such as C7F15 and F-. The perfluoroalkyl radicals can be oxidized by SO4- and HO, resulting in the formation of shorter chain perfluorocarboxylic acids (e.g., perfluorobutanoic acid [PFBA]), with eventual mineralization to CO2 and F-. At an environmentally relevant low initial concentration of 100 ng L-1 PFOA, 99 % degradation was achieved. The degradation of PFOA was slightly affected by the water matrix as less removal was observed in an environmental river water sample (91 %) compared to tests conducted in Milli-Q water (99 %). Overall, EO with PDS provided a destructive approach for the elimination of PFOA.

3.
Chemosphere ; 364: 143017, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39103104

RESUMO

Due to the increased human activities in burning of fossil fuels and deforestation, the CO2 level in the atmosphere gets increased up to 415 ppm; although it is an essential component for plant growth, an increased level of CO2 in the atmosphere leads to global warming and catastrophic climate change. Various conventional methods are used to capture and utilize CO2, among that a feasible and eco-friendly technique for creating value-added products is the CO2RR. Photochemical, electrochemical, thermochemical, and biochemical approaches can be used to decrease the level of CO2 in the atmosphere. The introduction of nano-catalysts in the reduction process helps in the efficient conversion of CO2 with improved selectivity, increased efficiency, and also enhanced stability of the catalyst materials. Thus, in this mini-review of nano-catalysts, some of the products formed during the reduction process, like CH3OH, C2H5OH, CO, HCOOH, and CH4, are explained. Among different types of metal catalysts, carbonaceous, single-atom catalysts, and MOF based catalysts play a significant role in the CO2 RR process. The effects of the catalyst material on the surface area, composition, and structural alterations are covered in depth. To aid in the design and development of high-performance nano-catalysts for value-added products, the current state, difficulties, and future prospects are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA