Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Development ; 147(14)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32554528

RESUMO

The microtubule motor cytoplasmic dynein contributes to radial migration of newborn pyramidal neurons in the developing neocortex. Here, we show that AMP-activated protein kinase (AMPK) mediates the nucleus-centrosome coupling, a key process for radial neuronal migration that relies on dynein. Depletion of the catalytic subunit of AMPK in migrating neurons impairs this coupling as well as neuronal migration. AMPK shows overlapping subcellular distribution with cytoplasmic dynein and the two proteins interact with each other. Pharmacological inhibition or activation of AMPK modifies the phosphorylation states of dynein intermediate chain (DIC) and dynein functions. Furthermore, AMPK phosphorylates DIC at Ser81. Expression of a phospho-resistant mutant of DIC retards neuronal migration in a similar way to AMPK depletion. Conversely, expression of the phospho-mimetic mutant of DIC alleviates impaired neuronal migration caused by AMPK depletion. Thus, AMPK-regulated dynein function via Ser81 DIC phosphorylation is crucial for radial neuronal migration.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dineínas do Citoplasma/metabolismo , Neocórtex/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Animais , Movimento Celular , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Dineínas do Citoplasma/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Camundongos , Camundongos Endogâmicos ICR , Mutagênese Sítio-Dirigida , Neurônios/citologia , Neurônios/metabolismo , Fator de Transcrição PAX6/metabolismo , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo
2.
Development ; 145(17)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217809

RESUMO

Newborn neurons in the developing neocortex undergo radial migration, a process that is coupled with their precise passage from multipolar to bipolar shape. The cell-extrinsic signals that govern this transition are, however, poorly understood. Here, we find that lysophosphatidic acid (LPA) signaling contributes to the establishment of a bipolar shape in mouse migratory neurons through LPA receptor 4 (LPA4). LPA4 is robustly expressed in migratory neurons. LPA4-depleted neurons show impaired multipolar-to-bipolar transition and become arrested in their migration. Further, LPA4-mediated LPA signaling promotes formation of the pia-directed process in primary neurons overlaid on neocortical slices. In addition, LPA4 depletion is coupled with altered actin organization as well as with destabilization of the F-actin-binding protein filamin A (FlnA). Finally, overexpression of FlnA rescues the morphology and migration defects of LPA4-depleted neurons. Thus, the LPA-LPA4 axis regulates bipolar morphogenesis and radial migration of newborn cortical neurons via remodeling of the actin cytoskeleton.


Assuntos
Movimento Celular/genética , Polaridade Celular/genética , Lisofosfolipídeos/metabolismo , Neocórtex/citologia , Neurônios/citologia , Receptores Purinérgicos/metabolismo , Células 3T3 , Animais , Linhagem Celular , Filaminas/metabolismo , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos ICR , Neurogênese/fisiologia , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores Purinérgicos/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
3.
Genes Dev ; 27(24): 2708-21, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24352425

RESUMO

Down's syndrome (DS), a major genetic cause of mental retardation, arises from triplication of genes on human chromosome 21. Here we show that DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) and DSCR1 (DS critical region 1), two genes lying within human chromosome 21 and encoding for a serine/threonine kinase and calcineurin regulator, respectively, are expressed in neural progenitors in the mouse developing neocortex. Increasing the dosage of both proteins in neural progenitors leads to a delay in neuronal differentiation, resulting ultimately in alteration of their laminar fate. This defect is mediated by the cooperative actions of DYRK1A and DSCR1 in suppressing the activity of the transcription factor NFATc. In Ts1Cje mice, a DS mouse model, dysregulation of NFATc in conjunction with increased levels of DYRK1A and DSCR1 was observed. Furthermore, counteracting the dysregulated pathway ameliorates the delayed neuronal differentiation observed in Ts1Cje mice. In sum, our findings suggest that dosage of DYRK1A and DSCR1 is critical for proper neurogenesis through NFATc and provide a potential mechanism to explain the neurodevelopmental defects in DS.


Assuntos
Diferenciação Celular/genética , Dosagem de Genes/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Musculares , Neocórtex/citologia , Neurogênese/genética , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Células-Tronco/citologia , Animais , Proteínas de Ligação ao Cálcio , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/patologia , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neocórtex/embriologia , Plasmídeos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Quinases Dyrk
4.
EMBO Rep ; 16(11): 1548-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26373433

RESUMO

Down syndrome (DS) arises from triplication of genes on human chromosome 21 and is associated with anomalies in brain development such as reduced production of neurons and increased generation of astrocytes. Here, we show that differentiation of cortical progenitor cells into astrocytes is promoted by DYRK1A, a Ser/Thr kinase encoded on human chromosome 21. In the Ts1Cje mouse model of DS, increased dosage of DYRK1A augments the propensity of progenitors to differentiate into astrocytes. This tendency is associated with enhanced astrogliogenesis in the developing neocortex. We also find that overexpression of DYRK1A upregulates the activity of the astrogliogenic transcription factor STAT in wild-type progenitors. Ts1Cje progenitors exhibit elevated STAT activity, and depletion of DYRK1A in these cells reverses the deregulation of STAT. In sum, our findings indicate that potentiation of the DYRK1A-STAT pathway in progenitors contributes to aberrant astrogliogenesis in DS.


Assuntos
Astrócitos/citologia , Síndrome de Down/fisiopatologia , Neocórtex/fisiopatologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Astrócitos/fisiologia , Diferenciação Celular , Síndrome de Down/genética , Síndrome de Down/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Neocórtex/patologia , Células-Tronco/fisiologia , Quinases Dyrk
5.
J Biol Chem ; 290(14): 9122-34, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25688093

RESUMO

The human ortholog of the targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a cytoskeletal protein that plays a major role in spindle assembly and is required for mitosis. During spindle morphogenesis, TPX2 cooperates with Aurora A kinase and Eg5 kinesin to regulate microtubule organization. TPX2 displays over 40 putative phosphorylation sites identified from various high-throughput proteomic screenings. In this study, we characterize the phosphorylation of threonine 72 (Thr(72)) in human TPX2, a residue highly conserved across species. We find that Cdk1/2 phosphorylate TPX2 in vitro and in vivo. Using homemade antibodies specific for TPX2 phosphorylated at Thr(72), we show that this phosphorylation is cell cycle-dependent and peaks at M phase. Endogenous TPX2 phosphorylated at Thr(72) does not associate with the mitotic spindle. Furthermore, ectopic GFP-TPX2 T72A preferentially concentrates on the spindle, whereas GFP-TPX2 WT distributes to both spindle and cytosol. The T72A mutant also increases the proportion of cells with multipolar spindles phenotype. This effect is associated with increased Aurora A activity and abnormally elongated spindles, indicative of higher Eg5 activity. In summary, we propose that phosphorylation of Thr(72) regulates TPX2 localization and impacts spindle assembly via Aurora A and Eg5.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fuso Acromático , Treonina/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Sequência de Bases , Proteínas de Ciclo Celular/química , Primers do DNA , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Nucleares/química , Fosfoproteínas/química , Fosforilação , Treonina/química , Xenopus , Proteínas de Xenopus/química
6.
Development ; 140(21): 4335-46, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24089469

RESUMO

Neural progenitor cells in the developing brain give rise to neurons and glia. Multiple extrinsic signalling molecules and their cognate membrane receptors have been identified to control neural progenitor fate. However, a role for G protein-coupled receptors in cell fate decisions in the brain remains largely putative. Here we show that GPRC5B, which encodes an orphan G protein-coupled receptor, is present in the ventricular surface of cortical progenitors in the mouse developing neocortex and is required for their neuronal differentiation. GPRC5B-depleted progenitors fail to adopt a neuronal fate and ultimately become astrocytes. Furthermore, GPRC5B-mediated signalling is associated with the proper regulation of ß-catenin signalling, a pathway crucial for progenitor fate decision. Our study uncovers G protein-coupled receptor signalling in the neuronal fate determination of cortical progenitors.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neocórtex/embriologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/genética , Primers do DNA/genética , Eletroporação , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Neocórtex/metabolismo , Neurogênese/genética , Plasmídeos/genética
7.
J Biol Chem ; 289(3): 1629-38, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24280221

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of motor neurons. Here we show that the basic leucine zipper transcription factor NFIL3 (also called E4BP4) confers neuroprotection in models of ALS. NFIL3 is up-regulated in primary neurons challenged with neurotoxic insults and in a mouse model of ALS. Overexpression of NFIL3 attenuates excitotoxic neuronal damage and protects neurons against neurodegeneration in a cell-based ALS model. Conversely, reduction of NFIL3 exacerbates neuronal demise in adverse conditions. Transgenic neuronal expression of NFIL3 in ALS mice delays disease onset and attenuates motor axon and neuron degeneration. These results suggest that NFIL3 plays a neuroprotective role in neurons and constitutes a potential therapeutic target for neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Axônios/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neurônios Motores/metabolismo , Fármacos Neuroprotetores/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Axônios/patologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia
8.
J Biol Chem ; 288(34): 24452-64, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23861403

RESUMO

In acute and chronic neurodegeneration, Ca(2+) mishandling and disruption of the cytoskeleton compromise neuronal integrity, yet abnormalities in the signaling roles of cytoskeletal proteins remain largely unexplored. We now report that the microtubule-associated protein p600 (also known as UBR4) promotes neuronal survival. Following depletion of p600, glutamate-induced Ca(2+) influx through NMDA receptors, but not AMPA receptors, initiates a degenerative process characterized by endoplasmic reticulum fragmentation and endoplasmic reticulum Ca(2+) release via inositol 1,4,5-trisphosphate receptors. Downstream of NMDA receptors, p600 associates with the calmodulin·calmodulin-dependent protein kinase IIα complex. A direct and atypical p600/calmodulin interaction is required for neuronal survival. Thus, p600 counteracts specific Ca(2+)-induced death pathways through regulation of Ca(2+) homeostasis and signaling.


Assuntos
Cálcio/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas de Ligação a Calmodulina/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Ratos , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
9.
Cell Mol Biol Lett ; 19(3): 381-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25034033

RESUMO

The large microtubule-associated/Ca(2+)-signalling protein p600 (also known as UBR4) is required for hippocampal neuronal survival upon Ca(2+) dyshomeostasis induced by glutamate treatment. During this process, p600 prevents aggregation of the Ca(2+)/calmodulin-dependent kinase IIα (CaMKIIα), a proxy of neuronal death, via direct binding to calmodulin in a microtubuleindependent manner. Using photoconductive stimulation coupled with live imaging of single neurons, we identified a distinct mechanism of prevention of CaMKIIα aggregation by p600. Upon direct depolarization, CaMKIIα translocates to microtubules. In the absence of p600, this translocation is interrupted in favour of a sustained self-aggregation that is prevented by the microtubule-stabilizing drug paclitaxel. Thus, during photoconductive stimulation, p600 prevents the aggregation of CaMKIIα by stabilizing microtubules. The effectiveness of this stabilization for preventing CaMKIIα aggregation during direct depolarization but not during glutamate treatment suggests a model wherein p600 has two modes of action depending on the source of cytosolic Ca(2+).


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Dendritos/metabolismo , Hipocampo/citologia , Luz , Proteínas Associadas aos Microtúbulos/genética , Neurônios/citologia , Neurônios/efeitos da radiação , Interferência de RNA , Ratos , Análise de Célula Única/métodos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Neuron ; 56(1): 79-93, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17920017

RESUMO

Centrosome- and microtubule-associated proteins have been shown to be important for maintaining the neural progenitor pool during neocortical development by regulating the mitotic spindle. It remains unclear whether these proteins may control neurogenesis by regulating other microtubule-dependent processes such as nuclear migration. Here, we identify Cep120, a centrosomal protein preferentially expressed in neural progenitors during neocortical development. We demonstrate that silencing Cep120 in the developing neocortex impairs both interkinetic nuclear migration (INM), a characteristic pattern of nuclear movement in neural progenitors, and neural progenitor self-renewal. Furthermore, we show that Cep120 interacts with transforming acidic coiled-coil proteins (TACCs) and that silencing TACCs also causes defects in INM and neural progenitor self-renewal. Our data suggest a critical role for Cep120 and TACCs in both INM and neurogenesis. We propose that sustaining INM may be a mechanism by which microtubule-regulating proteins maintain the neural progenitor pool during neocortical development.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Movimento Celular/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Neurônios/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Eletroporação/métodos , Embrião de Mamíferos , Feminino , Técnicas In Vitro , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Neocórtex/citologia , Neocórtex/embriologia , Neocórtex/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Gravidez , Transporte Proteico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Tempo , Transfecção/métodos
11.
J Neurosci ; 30(26): 8852-65, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20592207

RESUMO

Neuronal migration is an essential process for the development of the cerebral cortex. We have previously shown that LKB1, an evolutionally conserved polarity kinase, plays a critical role in neuronal migration in the developing neocortex. Here we show that LKB1 mediates Ser9 phosphorylation of GSK3beta to inactivate the kinase at the leading process tip of migrating neurons in the developing neocortex. This enables the microtubule plus-end binding protein adenomatous polyposis coli (APC) to localize at the distal ends of microtubules in the tip, thereby stabilizing microtubules near the leading edge. We also show that LKB1 activity, Ser9 phosphorylation of GSK3beta, and APC binding to the distal ends of microtubules are required for the microtubule stabilization in the leading process tip, centrosomal forward movement, and neuronal migration. These findings suggest that LKB1-induced spatial control of GSK3beta and APC at the leading process tip mediates the stabilization of microtubules within the tip and is critical for centrosomal forward movement and neuronal migration in the developing neocortex.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Centrossomo/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Neocórtex/crescimento & desenvolvimento , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Sequência de Aminoácidos , Animais , Linhagem Celular , Movimento Celular/fisiologia , Células Cultivadas , Técnicas de Silenciamento de Genes , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Técnicas In Vitro , Camundongos , Microtúbulos/metabolismo , Neocórtex/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Serina/metabolismo
12.
Nat Cell Biol ; 6(7): 595-608, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15208636

RESUMO

The cytoskeleton controls the architecture and survival of central nervous system (CNS) neurons by maintaining the stability of axons and dendrites. Although neurofilaments (NFs) constitute the main cytoskeletal network in these structures, the mechanism that underlies subunit incorporation into filaments remains a mystery. Here we report that NUDEL, a mammalian homologue of the Aspergillus nidulans nuclear distribution molecule NudE, is important for NF assembly, transport and neuronal integrity. NUDEL facilitates the polymerization of NFs through a direct interaction with the NF light subunit (NF-L). Knockdown of NUDEL by RNA interference (RNAi) in a neuroblastoma cell line, primary cortical neurons or post-natal mouse brain destabilizes NF-L and alters the homeostasis of NFs. This results in NF abnormalities and morphological changes reminiscent of neurodegeneration. Furthermore, variations in levels of NUDEL correlate with disease progression and NF defects in a mouse model of neurodegeneration. Thus, NUDEL contributes to the integrity of CNS neurons by regulating NF assembly.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Transporte/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas de Neurofilamentos/biossíntese , Neurônios/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Animais Recém-Nascidos , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Sistema Nervoso Central/ultraestrutura , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neurônios/ultraestrutura , Polímeros/metabolismo , Transporte Proteico/genética , Interferência de RNA/fisiologia
13.
Neuron ; 49(1): 25-39, 2006 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-16387637

RESUMO

The mechanisms controlling neurogenesis during brain development remain relatively unknown. Through a differential protein screen with developmental versus mature neural tissues, we identified a group of developmentally enriched microtubule-associated proteins (MAPs) including doublecortin-like kinase (DCLK), a protein that shares high homology with doublecortin (DCX). DCLK, but not DCX, is highly expressed in regions of active neurogenesis in the neocortex and cerebellum. Through a dynein-dependent mechanism, DCLK regulates the formation of bipolar mitotic spindles and the proper transition from prometaphase to metaphase during mitosis. In cultured cortical neural progenitors, DCLK RNAi Lentivirus disrupts the structure of mitotic spindles and the progression of M phase, causing an increase of cell-cycle exit index and an ectopic commitment to a neuronal fate. Furthermore, both DCLK gain and loss of function in vivo specifically promote a neuronal identity in neural progenitors. These data provide evidence that DCLK controls mitotic division by regulating spindle formation and also determines the fate of neural progenitors during cortical neurogenesis.


Assuntos
Divisão Celular/fisiologia , Sistema Nervoso/embriologia , Neurônios/citologia , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Fuso Acromático/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Córtex Cerebral/embriologia , Proteína Duplacortina , Quinases Semelhantes a Duplacortina , Dineínas/fisiologia , Desenvolvimento Embrionário/fisiologia , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/fisiologia , Mitose/fisiologia , Prometáfase/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo
14.
J Neurosci ; 28(14): 3604-14, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18385319

RESUMO

There is an increasing body of literature pointing to cytoskeletal proteins as spatial organizers and interactors of organelles. In this study, we identified protein 600 (p600) as a novel microtubule-associated protein (MAP) developmentally regulated in neurons. p600 exhibits the unique feature to interact with the endoplasmic reticulum (ER). Silencing of p600 by RNA interference (RNAi) destabilizes neuronal processes in young primary neurons undergoing neurite extension and containing scarce staining of the ER marker Bip. Furthermore, in utero electroporation of p600 RNAi alters neuronal migration, a process that depends on synergistic actions of microtubule dynamics and ER functions. p600-depleted migrating neurons display thin, crooked, and "zigzag" leading process with very few ER membranes. Thus, p600 constitutes the only known MAP to associate with the ER in neurons, and this interaction may impact on multiple cellular processes ranging from neuronal development to neuronal maturation and plasticity.


Assuntos
Sistema Nervoso Central/citologia , Retículo Endoplasmático/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Neurônios/ultraestrutura , Animais , Animais Recém-Nascidos , Proteínas de Ligação a Calmodulina , Diferenciação Celular/fisiologia , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Imunoeletrônica/métodos , Proteínas Associadas aos Microtúbulos/genética , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Proteínas de Neurofilamentos/deficiência , Interferência de RNA/fisiologia , Transfecção/métodos , Tubulina (Proteína)/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
Neurosci Res ; 138: 19-25, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30227164

RESUMO

Down syndrome (DS) also known as Trisomy 21 is a genetic disorder that occurs in ∼1 in 800 live births. The disorder is caused by the triplication of all or part of human chromosome 21 and therefore, is thought to arise from the increased dosage of genes found within chromosome 21. The manifestations of the disease include among others physical growth delays and intellectual disability. A prominent anatomical feature of DS is the microcephaly that results from altered brain development. Recent studies using mouse models of DS have shed new light on DYRK1A (dual-specificity tyrosine-phosphorylation-regulated kinase 1A), a gene located on human chromosome 21 that plays a critical role in neocortical development. The present review summarizes effects of the increased dosage of DYRK1A on the proliferative, neurogenic and astrogliogenic potentials of cortical neural progenitor cells, and relates these findings to the clinical manifestations of the disease.


Assuntos
Síndrome de Down/fisiopatologia , Microcefalia/fisiopatologia , Neocórtex/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Animais , Síndrome de Down/complicações , Humanos , Camundongos , Microcefalia/complicações , Quinases Dyrk
16.
Neuron ; 42(2): 197-211, 2004 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15091337

RESUMO

Disabled-1 regulates laminar organization in the developing mammalian brain. Although mutation of the disabled-1 gene in scrambler mice results in abnormalities in neuronal positioning, migratory behavior linked to Disabled-1 signaling is not completely understood. Here we show that newborn neurons in the scrambler cortex remain attached to the process of their parental radial glia during the entire course of radial migration, whereas wild-type neurons detach from the glial fiber in the later stage of migration. This abnormal neuronal-glial adhesion is highly linked to the positional abnormality of scrambler neurons and depends intrinsically on Disabled-1 Tyr220 and Tyr232, potential phosphorylation sites during corticogenesis. Importantly, phosphorylation at those sites regulates alpha3 integrin levels, which is critical for the timely detachment of migrating neurons from radial glia. Altogether, these results outline the molecular mechanism by which Disabled-1 signaling controls the adhesive property of neurons to radial glia, thereby maintaining proper neuronal positioning during corticogenesis.


Assuntos
Córtex Cerebral/citologia , Proteínas do Tecido Nervoso/genética , Neuroglia/citologia , Neurônios/citologia , Animais , Adesão Celular/genética , Movimento Celular/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Neuroglia/fisiologia , Neurônios/fisiologia , Transdução de Sinais/genética
17.
J Neurosci ; 27(43): 11769-75, 2007 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-17959818

RESUMO

The cerebral cortex is formed through the coordination of highly organized cellular processes such as neuronal migration and neuronal maturation. Polarity establishment of neurons and polarized regulation of the neuronal cytoskeleton are essential for these events. Here we find that LKB1, the closest homolog of the Caenorhabditis elegans polarity protein Par4, is expressed in the developing neocortex. Knock-down of LKB1 in migrating immature neurons impairs neuronal migration, with alteration of the centrosomal positioning and with uncoupling between the centrosome and nucleus. Furthermore, impairment of LKB1 in differentiating neurons within the cortical plate induces malpositioning of the centrosome at the basal side of the nucleus, instead of the normal apical positioning. This is accompanied with the disruption of axonal and dendritic polarity, resulting in reversed orientation of differentiating neurons. Moreover, LKB1 specifies axon and dendrites identity in vitro. Together, these observations indicate that LKB1 plays a critical role in neuronal migration and neuronal differentiation. Furthermore, we propose that proper neuronal migration and differentiation are intimately coupled to the precise control of the centrosomal positioning/movement directed by LKB1.


Assuntos
Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Centrossomo/fisiologia , Neocórtex/fisiologia , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Quinases Ativadas por AMP , Animais , Camundongos , Camundongos Knockout , Neocórtex/citologia , Neocórtex/embriologia , Neurônios/citologia , Organogênese/fisiologia , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética
18.
Nat Neurosci ; 6(12): 1284-91, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14608361

RESUMO

Several genes essential for neocortical layering have been identified in recent years, but their precise roles in this process remain to be elucidated. Mice deficient in p35--an activator of cyclin-dependent kinase 5 (Cdk5)--are characterized by a neocortex that has inverted layering. To decipher the physiological mechanisms that underlie this defect, we compared time-lapse recordings between p35(-/-) and wild-type cortical slices. In the p35(-/-) neocortex, the classic modes of radial migration--somal translocation and locomotion--were largely replaced by a distinct mode of migration: branched migration. Branched migration is cell-autonomous, associated with impaired neuronal-glial interaction and rare in neurons of scrambler mice, which are deficient in Dab1. Hence, our findings suggest that inside-out layering requires distinct functions of Reelin and p35/Cdk5 signaling, with the latter being important for proper glia-guided migration.


Assuntos
Movimento Celular/fisiologia , Proteínas do Tecido Nervoso/deficiência , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Feminino , Técnicas In Vitro , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neuroglia/citologia , Neurônios/citologia , Gravidez , Proteína Reelina
19.
Yakugaku Zasshi ; 137(7): 795-800, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-28674289

RESUMO

Down syndrome (DS) is caused by trisomy for human chromosome 21. Individuals with DS commonly exhibit mental retardation, which is associated with abnormal brain development. In the neocortex of the DS brain, the density of neurons is markedly reduced, whereas that of astrocytes is increased. Similar to abnormalities seen in DS brains, mouse models of DS show deficits in brain development, and neural progenitor cells that give rise to neurons and glia show dysregulation in their differentiation. These suggest that the dysregulation of progenitor fate choices contributes to alterations in the numbers of neurons and astrocytes in the DS brain. Nevertheless, the molecular basis underlying these defects remains largely unknown. We showed that the overexpression of two human chromosome 21 genes, DYRK1A and DSCR1, contributes to suppressed neuronal differentiation of progenitors in the Ts1Cje mouse model of DS. In addition, the effect of DYRK1A and DSCR1 overexpression on neuronal differentiation is mediated by excessive attenuation of the transcription factor NFATc. Additionally, we demonstrated that an increased dosage of DYRK1A contributes to elevated potential of Ts1Cje progenitors to differentiate into astrocytes and enhanced astrogliogenesis in the Ts1Cje neocortex. Further, we linked the increased dosage of DYRK1A to dysregulation of STAT, a transcription factor critical for astrogliogenesis. Together, our studies identify critical pathways responsible for the proper differentiation of neural progenitors into neurons and astrocytes, with direct implications for the anomalies in brain development observed in DS.


Assuntos
Encéfalo/citologia , Encéfalo/patologia , Diferenciação Celular/efeitos dos fármacos , Síndrome de Down/genética , Síndrome de Down/patologia , Células-Tronco Neurais/citologia , Neurogênese/genética , Animais , Astrócitos , Cromossomos Humanos Par 21/genética , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/fisiologia , Fatores de Transcrição NFATC , Neuroglia , Neurônios , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/fisiologia , Fatores de Transcrição STAT , Quinases Dyrk
20.
Sci Rep ; 6: 25180, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142930

RESUMO

The ability of radial glial progenitors (RGPs) to generate cortical neurons is determined by local extracellular factors and signaling pathways intrinsic to RGPs. Here we find that GPR157, an orphan G protein-coupled receptor, localizes to RGPs' primary cilia exposed to the cerebrospinal fluid (CSF). GPR157 couples with Gq-class of the heterotrimeric G-proteins and signals through IP3-mediated Ca(2+) cascade. Activation of GPR157-Gq signaling enhances neuronal differentiation of RGPs whereas interfering with GPR157-Gq-IP3 cascade in RGPs suppresses neurogenesis. We also detect the presence of putative ligand(s) for GPR157 in the CSF, and demonstrate the increased ability of the CSF to activate GPR157 at neurogenic phase. Thus, GPR157-Gq signaling at the primary cilia of RGPs is activated by the CSF and contributes to neurogenesis.


Assuntos
Sinalização do Cálcio , Diferenciação Celular , Células Ependimogliais/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Neurônios/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/fisiologia , Animais , Líquido Cefalorraquidiano/metabolismo , Cílios/química , Camundongos Endogâmicos ICR , Neurogênese , Células-Tronco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA