Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Mar Drugs ; 22(9)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39330303

RESUMO

We describe five new isolates of two Gambierdiscus species from Bahía de La Paz in the southern Gulf of California. Batch cultures of Gambierdiscus were established for morphological characterization using light microscopy (LM) and scanning electron microscopy (SEM). Pigment and amino acid profiles were also analyzed using high-performance liquid chromatography (HPLC-UV and HPLC-DAD). Finally, toxicity (CTX-like and MTX-like activity) was evaluated using the Artemia salina assay (ARTOX), mouse assay (MBA), marine fish assay (MFA), and fluorescent receptor binding assay (fRBA). These strains were identified as Gambierdiscus cf. caribaeus and Gambierdiscus cf. carpenteri. Toxicity for CTX-like and MTX-like activity was confirmed in all evaluated clones. Seven pigments were detected, with chlorophyll a, pyridine, Chl2, and diadinoxanthin being particularly noteworthy. For the first time, a screening of the amino acid profile of Gambierdiscus from the Pacific Ocean was conducted, which showed 14 amino acids for all strains except histidine, which was only present in G. cf. caribeaus. We report the presence of Gambierdiscus and Fukuyoa species in the Mexican Pacific, where ciguatera fish poisoning (CFP) cases have occurred.


Assuntos
Dinoflagellida , Animais , Camundongos , Dinoflagellida/química , Aminoácidos/análise , Cromatografia Líquida de Alta Pressão , Artemia/efeitos dos fármacos , Ciguatoxinas/toxicidade , Ciguatera , Peixes/parasitologia
3.
Mar Drugs ; 19(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572171

RESUMO

Most of the shellfish fisheries of Mexico occur in the Gulf of California. In this region, known for its high primary productivity, blooms of diatoms and dinoflagellates are common, occurring mainly during upwelling events. Dinoflagellates that produce lipophilic toxins are present, where some outbreaks related to okadaic acid and dinophisystoxins have been recorded. From January 2015 to November 2017 samples of three species of wild bivalve mollusks were collected monthly in five sites in the southern region of Bahía de La Paz. Pooled tissue extracts were analyzed using LC-MS/MS to detect lipophilic toxins. Eighteen analogs of seven toxin groups, including cyclic imines were identified, fortunately individual toxins did not exceed regulatory levels and also the total toxin concentration for each bivalve species was lower than the maximum permitted level for human consumption. Interspecific differences in toxin number and concentration were observed in three species of bivalves even when the samples were collected at the same site. Okadaic acid was detected in low concentrations, while yessotoxins and gymnodimines had the highest concentrations in bivalve tissues. Although in low quantities, the presence of cyclic imines and other lipophilic toxins in bivalves from the southern Gulf of California was constant.


Assuntos
Bivalves/metabolismo , Toxinas Marinhas/análise , Animais , Compostos Heterocíclicos com 3 Anéis/análise , Hidrocarbonetos Cíclicos/análise , Iminas/análise , Toxinas Marinhas/química , Venenos de Moluscos , Ácido Okadáico/análise , Oxocinas/análise , Solubilidade
4.
PLoS Genet ; 12(9): e1006298, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27622452

RESUMO

Sulphur (S) is an essential element for all living organisms. The uptake, assimilation and metabolism of S in plants are well studied. However, the regulation of S homeostasis remains largely unknown. Here, we report on the identification and characterisation of the more sulphur accumulation1 (msa1-1) mutant. The MSA1 protein is localized to the nucleus and is required for both S-adenosylmethionine (SAM) production and DNA methylation. Loss of function of the nuclear localised MSA1 leads to a reduction in SAM in roots and a strong S-deficiency response even at ample S supply, causing an over-accumulation of sulphate, sulphite, cysteine and glutathione. Supplementation with SAM suppresses this high S phenotype. Furthermore, mutation of MSA1 affects genome-wide DNA methylation, including the methylation of S-deficiency responsive genes. Elevated S accumulation in msa1-1 requires the increased expression of the sulphate transporter genes SULTR1;1 and SULTR1;2 which are also differentially methylated in msa1-1. Our results suggest a novel function for MSA1 in the nucleus in regulating SAM biosynthesis and maintaining S homeostasis epigenetically via DNA methylation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigênese Genética , Homeostase , Proteínas Nucleares/genética , S-Adenosilmetionina/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Metilação de DNA , Glutationa/metabolismo , Proteínas Nucleares/metabolismo
5.
Mar Drugs ; 17(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597874

RESUMO

Historical records of ciguatera in Mexico date back to 1862. This review, including references and epidemiological reports, documents 464 cases during 25 events from 1984 to 2013: 240 (51.72%) in Baja California Sur, 163 (35.12%) in Quintana Roo, 45 (9.69%) in Yucatan, and 16 (3.44%) cases of Mexican tourists intoxicated in Cuba. Carnivorous fish, such as snapper (Lutjanus) and grouper (Epinephelus and Mycteroperca) in the Pacific Ocean, and great barracuda (Sphyraena barracuda) and snapper (Lutjanus) in the Atlantic (Gulf of Mexico and Caribbean Sea), were involved in all cases. In the Mexican Caribbean, a sub-record of ciguatera cases that occurred before 1984 exists. However, the number of intoxications has increased in recent years, and this food poisoning is poorly studied in the region. Current records suggest that ciguatera fish poisoning in humans is the second most prevalent form of seafood poisoning in Mexico, only exceeded by paralytic shellfish poisoning (505 cases, 21 fatalities in the same 34-year period). In this study, the status of ciguatera in Mexico (epidemiological and treatment), and the fish vectors are reviewed. Dinoflagellate species Gambierdiscus, Ostreopsis, and Prorocentrum are related with the reported outbreaks, marine toxins, ecological risk, and the potential toxicological impact.


Assuntos
Ciguatera/epidemiologia , Ciguatoxinas/química , Animais , Peixes , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , México/epidemiologia , Alimentos Marinhos/análise
6.
Sensors (Basel) ; 17(1)2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28075364

RESUMO

Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage.

7.
Sensors (Basel) ; 16(7)2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27399709

RESUMO

In mobile wireless sensor networks (MWSN), nodes are allowed to move autonomously for deployment. This process is meant: (i) to achieve good coverage; and (ii) to distribute the communication load as homogeneously as possible. Rather than optimizing deployment, reactive algorithms are based on a set of rules or behaviors, so nodes can determine when to move. This paper presents an experimental evaluation of both reactive deployment approaches: rule-based and behavior-based ones. Specifically, we compare a backbone dispersion algorithm with a social potential fields algorithm. Most tests are done under simulation for a large number of nodes in environments with and without obstacles. Results are validated using a small robot network in the real world. Our results show that behavior-based deployment tends to provide better coverage and communication balance, especially for a large number of nodes in areas with obstacles.

8.
Arch Virol ; 159(9): 2213-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24658782

RESUMO

White spot syndrome virus (WSSV) has a worldwide distribution and is considered one of the most pathogenic and devastating viruses to the shrimp industry. A few studies have explored the effect of WSSV on shrimp acclimated to low (5 practical salinity units [psu]) or high ([40 psu) salinity conditions. In this work, we analysed the physiological response of WSSV-infected Litopenaeus vannamei juveniles that were acclimated to different salinities (5, 15, 28, 34 and 54 psu). We evaluated the osmotic response and survival of the shrimp at different times after infection (0 to 48 hours), and we followed the expression levels of a viral gene (vp664) in shrimp haemolymph using real-time PCR. Our results indicate that the susceptibility of the shrimp to the virus increased at extreme salinities (5 and 54 psu), with higher survival rates at 15 and 28 psu, which were closer to the iso-osmotic point (24.7 psu, 727.5 mOsmol/kg). Acute exposure to the virus made the haemolymph less hyperosmotic at 5 and 15 psu and less hypo-osmotic at higher salinities ([28 psu). The capacity of white shrimp to osmoregulate, and thus survive, significantly decreased following WSSV infection. According to our results, extreme salinities (5 or 54 psu) are more harmful than seawater.


Assuntos
Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação , Animais , Hemolinfa/virologia , Pressão Osmótica , Penaeidae/efeitos dos fármacos , Penaeidae/fisiologia , Salinidade
9.
Proc Natl Acad Sci U S A ; 108(21): 8867-72, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21555578

RESUMO

Estrogen has well-documented neuroprotective effects in a variety of clinical and experimental disorders of the CNS, including autoimmune inflammation, traumatic injury, stroke, and neurodegenerative diseases. The beneficial effects of estrogens in CNS disorders include mitigation of clinical symptoms, as well as attenuation of histopathological signs of neurodegeneration and inflammation. The cellular mechanisms that underlie these CNS effects of estrogens are uncertain, because a number of different cell types express estrogen receptors in the peripheral immune system and the CNS. Here, we investigated the potential roles of two endogenous CNS cell types in estrogen-mediated neuroprotection. We selectively deleted estrogen receptor-α (ERα) from either neurons or astrocytes using well-characterized Cre-loxP systems for conditional gene knockout in mice, and studied the effects of these conditional gene deletions on ERα ligand-mediated neuroprotective effects in a well-characterized model of adoptive experimental autoimmune encephalomyelitis (EAE). We found that the pronounced and significant neuroprotective effects of systemic treatment with ERα ligand on clinical function, CNS inflammation, and axonal loss during EAE were completely prevented by conditional deletion of ERα from astrocytes, whereas conditional deletion of ERα from neurons had no significant effect. These findings show that signaling through ERα in astrocytes, but not through ERα in neurons, is essential for the beneficial effects of ERα ligand in EAE. Our findings reveal a unique cellular mechanism for estrogen-mediated CNS neuroprotective effects by signaling through astrocytes, and have implications for understanding the pathophysiology of sex hormone effects in diverse CNS disorders.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Receptor alfa de Estrogênio/fisiologia , Fármacos Neuroprotetores/farmacologia , Animais , Astrócitos/patologia , Células Cultivadas , Receptor alfa de Estrogênio/deficiência , Inflamação/prevenção & controle , Ligantes , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/prevenção & controle , Neurônios/patologia
10.
Arch Biochem Biophys ; 536(1): 87-96, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23800877

RESUMO

The reversible reaction catalyzed by serine hydroxymethyltransferase (SHMT) is the major one-carbon unit source for essential metabolic processes. The Arabidopsis thaliana genome encodes seven SHMT isozymes localized in mitochondria, plastids, nuclei, and the cytosol. Knowledge of the biochemical properties of each isozyme is central to understanding and manipulating one-carbon metabolism in plants. We heterologously expressed and purified three recombinant SHMTs from A. thaliana (AtSHMTs) putatively localized in mitochondria (two) and the cytosol (one). Their biochemical properties were characterized with respect to the impact of folate polyglutamylation on substrate saturation kinetics. The two mitochondrial AtSHMTs, but not the cytosolic one, had increased turnover rates at higher (>0.4ng/µL) enzyme concentrations in the presence of monoglutamylated folate substrates, but not in the presence of pentaglutamylated folate substrates. We found no experimental support for a change in oligomerization state over the range of enzyme concentration studied. Modeling of the enzyme structures presented features that may explain the activity differences between the mitochondrial and cytosolic isozymes.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/metabolismo , Ácido Fólico/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Mitocôndrias/enzimologia , Peptídeos/metabolismo , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Clonagem Molecular , Ativação Enzimática , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/genética , Cinética , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Tetra-Hidrofolatos/metabolismo
11.
Heliyon ; 9(6): e17018, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484312

RESUMO

Harmful algae blooms (HABs) are a conspicuous phenomenon that affect the coastal zone worldwide. Aquaculture industry zones are not excluded from being affected by HAB that cause organism mortality and jeopardize their innocuity due to the contamination by phytotoxins with the concomitant economic losses. Direct ingestion of metabolites from HAB species or organisms contaminated with phycotoxins together with dermal absorption of dissolved metabolites (DM), including toxins, are the two main routes of poisoning. From these poisoning routes, the effect of DM, particularly paralytic shellfish toxins (PST), has been relatively understudied. This intoxication route can be conspicuous and could be involved in many significant mortalities of cultivated marine organisms. In this study, white shrimp juveniles (2.1 g wet weight) of Litopenaeus vannamei were exposed to extracts of 104, 105 and 106 cells/L of the dinoflagellate Gymnodinium catenatum, a PST producer. The experiment ended after 17 h of exposure when shrimps exposed to 106 cells/L extract started to die and the rest of the shrimps, from this and other treatments, did not respond to gentle physical stimulus and their swimming activity was low and erratic. Toxin concentrations were determined using high performance liquid chromatography while qualitative and quantitative histological damages were assessed on the tissues. In general, most toxins were accumulated in the hepatopancreas where more than 90% were found. Other tissues such as intestine, muscle, and gills contained less than 10% of toxins. Compared to the control, the main significative tissue damages were, loss of up to 80% of the nerve cord, 40% of the muscle coverage area, and reduction of the gill lamella width. Also, atrophy in hepatopancreas was observed, manifested by a decrease in the height of B cells, lumen degeneration and thinning of tubules. Some damages were more evident when shrimps were exposed to higher concentrated extracts of G. catenatum, however, not all damages were progressive and proportional to the extract concentration. These data confirm that PST dissolved enter the shrimp, possibly via the gills, and suggest that dissolved metabolites, including PST, may cause tissue damage. Other dissolved metabolites produced by G. catenatum, alone or in synergy, may also be involved. These results also pointed out the importance of dissolved molecules produced for this dinoflagellate and the potential effect on cultured shrimp.

12.
J Alzheimers Dis ; 96(2): 683-693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840499

RESUMO

BACKGROUND: White matter hyperintensities (WMH) that occur in the setting of vascular cognitive impairment and dementia (VCID) may be dynamic increasing or decreasing volumes or stable over time. Quantifying such changes may prove useful as a biomarker for clinical trials designed to address vascular cognitive-impairment and dementia and Alzheimer's Disease. OBJECTIVE: Conducting multi-site cross-site inter-rater and test-retest reliability of the MarkVCID white matter hyperintensity growth and regression protocol. METHODS: The NINDS-supported MarkVCID Consortium evaluated a neuroimaging biomarker developed to track WMH change. Test-retest and cross-site inter-rater reliability of the protocol were assessed. Cognitive test scores were analyzed in relation to WMH changes to explore its construct validity. RESULTS: ICC values for test-retest reliability of WMH growth and regression were 0.969 and 0.937 respectively, while for cross-site inter-rater ICC values for WMH growth and regression were 0.995 and 0.990 respectively. Word list long-delay free-recall was negatively associated with WMH growth (p < 0.028) but was not associated with WMH regression. CONCLUSIONS: The present data demonstrate robust ICC validity of a WMH growth/regression protocol over a one-year period as measured by cross-site inter-rater and test-retest reliability. These data suggest that this approach may serve an important role in clinical trials of disease-modifying agents for VCID that may preferentially affect WMH growth, stability, or regression.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Vascular , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores
13.
J Biol Chem ; 286(49): 42091-42098, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22002057

RESUMO

FMN hydrolases catalyze dephosphorylation of FMN to riboflavin. Although these enzymes have been described in many organisms, few had their corresponding genes cloned and their recombinant proteins biochemically characterized, and none had their physiological roles determined. We found previously that FMN hydrolase activity in pea chloroplasts is Mg(2+)-dependent, suggesting an enzyme of the haloacid dehalogenase (HAD) superfamily. In this study, a new FMN hydrolase was purified by multistep chromatography after ammonium sulfate precipitation. The molecular weight of the native protein was estimated at ∼59,400, a dimer of about twice the predicted molecular weight of most HAD superfamily phosphatases. After SDS-PAGE of the partially purified material, two separate protein bands within 25-30 kDa were extracted from the gel and analyzed by nanoLC-MS/MS. Peptide sequence matching to the protein samples suggested the presence of three HAD-like hydrolases. cDNAs for sequence homologs from Arabidopsis thaliana of these proteins were expressed in Escherichia coli. Activity screening of the encoded proteins showed that the At1g79790 gene encodes an FMN hydrolase (AtcpFHy1). Plastid localization of AtcpFHy1 was confirmed using fluorescence microscopy of A. thaliana protoplasts transiently expressing the N-terminal fusion of AtcpFHy1 to enhanced green fluorescent protein. Phosphatase activity of AtcpFHy1 is FMN-specific, as assayed with 19 potential substrates. Kinetic parameters and pH and temperature optima for AtcpFHy1 were determined. A phylogenetic analysis of putative phosphatases of the HAD superfamily suggested distinct evolutionary origins for the plastid AtcpFHy1 and the cytosolic FMN hydrolase characterized previously.


Assuntos
Cloroplastos/metabolismo , FMN Redutase/fisiologia , Hidrolases/química , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatografia Líquida/métodos , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Genes de Plantas , Hidrólise , Magnésio/química , Modelos Genéticos , Peso Molecular , Pisum sativum/metabolismo , Peptídeos/química , Plastídeos/metabolismo , Espectrometria de Massas em Tandem/métodos , Temperatura
14.
Eur J Immunol ; 41(1): 140-50, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21182085

RESUMO

Estrogens act upon nuclear estrogen receptors (ER) to ameliorate cell-mediated autoimmune disease. As most immunomodulatory effects of estrogens in EAE have been attributed to the function of ER-α, we previously demonstrated that ER-ß ligand treatment reduced disease severity without affecting peripheral cytokine production or levels of CNS inflammation, suggesting a direct neuroprotective effect; however, the effect of ER-ß treatment on the function of immune cells within the target organ remained unknown. Here, we used adoptive transfer studies to show that ER-ß ligand treatment was protective in the effector, but not the induction phase of EAE, as shown by decreased clinical disease severity with the preservation of axons and myelin in spinal cords. The analysis of the immune cell infiltrates in the CNS revealed that while ER-ß ligand treatment did not reduce overall levels of CNS inflammation, there was a decrease in the DC percentage, and these CNS DC had decreased TNF-α production. Finally, experiments using DC deficient in ER-ß revealed that the expression of ER-ß on DC was essential for protective effects of ER-ß ligand treatment in EAE. Our results demonstrate for the first time an effect of ER-ß ligand treatment in vivo on DC in the target organ of a prototypic cell-mediated autoimmune disease.


Assuntos
Transferência Adotiva , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/imunologia , Animais , Axônios/efeitos dos fármacos , Axônios/imunologia , Células Dendríticas/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Feminino , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/imunologia , Nitrilas/farmacologia , Propionatos/farmacologia , Índice de Gravidade de Doença , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/imunologia
15.
Rev Biol Trop ; 60(1): 173-86, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22458217

RESUMO

Gymnodinium bloom events are of concern, since they produce toxins, which have unfavorable consequences to marine ecosystems, human health and the economy. This report describes the physico-chemical conditions that were present during the algal bloom event on May 2010 in Bahía Manzanillo and Bahía Santiago, Colima, Mexico. For this, seawater nutrient analysis, phytoplankton counts, identification, and toxicity tests were undertaken. Nutrients in seawater were determined using colorimetric techniques, the higher concentrations (8.88 microM DIN, 0.78 microM PO4 and 24.34 microM SiO2) were related with upwelling waters that promoted the algal bloom that began after registering the year lowest sea-surface temperature, favoring the rapid growth of G. catenatum (up to 1.02 x 10(7) cells/L). Phytoplankton counting was carried out using sedimentation chambers and cells enumerated on appropriated area. The bloom persisted in the bays for approximately two weeks and was associated with toxicity (determined with HPLC) in local oysters (1525.8 microg STXeq/100g), and in phytoplankton (10.9 pg STXeq/cells) samples. Strong variations in cell toxicity (1.4 to 10.9pg STXeq/cells), most likely reflected the availability of inorganic nutrients. The toxin profile of the phytoplankton samples consisted of 11 toxins and resembled those recorded for several strains of G. catenatum isolated from other coastal areas of Mexico.


Assuntos
Dinoflagellida/crescimento & desenvolvimento , Eutrofização/fisiologia , Toxinas Marinhas/análise , Baías , Dinoflagellida/química , Monitoramento Ambiental , México , Densidade Demográfica , Água do Mar
16.
Toxins (Basel) ; 14(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36356010

RESUMO

In September and November 2016, eight marine sampling sites along the coast of the southeastern Gulf of Mexico were monitored for the presence of lipophilic and hydrophilic toxins. Water temperature, salinity, hydrogen potential, dissolved oxygen saturation, inorganic nutrients and phytoplankton abundance were also determined. Two samples filtered through glass fiber filters were used for the extraction and analysis of paralytic shellfish toxins (PSTs) by lateral flow immunochromatography (IFL), HPLC with post-column oxidation and fluorescent detection (FLD) and UHPLC coupled to tandem mass spectrometry (UHPLC-MS/MS). Elevated nutrient contents were associated with the sites of rainwater discharge or those near anthropogenic activities. A predominance of the dinoflagellate Pyrodinium bahamense was found with abundances of up to 104 cells L-1. Identification of the dinoflagellate was corroborated by light and scanning electron microscopy. Samples for toxins were positive by IFL, and the analogs NeoSTX and STX were identified and quantified by HPLC-FLD and UHPLC-MS/MS, with a total PST concentration of 6.5 pg cell-1. This study is the first report that confirms the presence of PSTs in P. bahamense in Mexican waters of the Gulf of Mexico.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , Toxinas Marinhas/análise , Espectrometria de Massas em Tandem/métodos , Golfo do México , Dinoflagellida/química , Frutos do Mar/análise , Saxitoxina
17.
Toxins (Basel) ; 14(9)2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36136554

RESUMO

Allelopathy between phytoplankton organisms is promoted by substances released into the marine environment that limit the presence of the dominating species. We evaluated the allelopathic effects and response of cell-free media of Chattonella marina var. marina and Gymnodinium impudicum in the toxic dinoflagellate Gymnodinium catenatum. Additionally, single- and four-cell chains of G. catenatum isolated from media with allelochemicals were cultured to evaluate the effects of post exposure on growth and cell viability. Cell diagnosis showed growth limitation and an increase in cell volume, which reduced mobility and led to cell lysis. When G. catenatum was exposed to cell-free media of C. marina and G. impudicum, temporary cysts and an increased concentration of paralytic shellfish toxins were observed. After exposure to allelochemicals, the toxin profile of G. catenatum cells in the allelopathy experiments was composed of gonyautoxins 2/3 (GTX2/3), decarcarbamoyl (dcSTX, dcGTX2/3), and the sulfocarbamoyl toxins (B1 and C1/2). A difference in toxicity (pg STXeq cell−1) was observed between G. catenatum cells in the control and those exposed to the filtrates of C. marina var. marina and G. impudicum. Single cells of G. catenatum had a lower growth rate, whereas chain-forming cells had a higher growth rate. We suggest that a low number of G. catenatum cells can survive the allelopathic effect. We hypothesize that the survival strategy of G. catenatum is migration through the chemical cloud, encystment, and increased toxicity.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Alelopatia , Humanos , Toxinas Marinhas/toxicidade , Feromônios/farmacologia
18.
Toxins (Basel) ; 14(7)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35878239

RESUMO

The harmful microalgae Gymnodinium catenatum is a unique naked dinoflagellate that produces paralytic shellfish poisoning toxins (PSTs). This species is common along the coasts of the Mexican Pacific and is responsible for paralytic shellfish poisoning, which has resulted in notable financial losses in both fisheries and aquaculture. In the Gulf of California, G. catenatum has been related to mass mortality events in fish, shrimp, seabirds, and marine mammals. In this study, the growth, toxin profiles, and toxin content of four G. catenatum strains isolated from Bahía de La Paz (BAPAZ) and Bahía de Mazatlán (BAMAZ) were evaluated with different N:P ratios, keeping the phosphorus concentration constant. All strains were cultivated in semi-continuous cultures (200 mL, 21.0 °C, 120 µmol photon m-2s-1, and a 12:12 h light-dark cycle) with f/2 + Se medium using N:P ratios of: 4:1, 8:1, 16:1, 32:1, and 64:1. Paralytic toxins were analyzed by HPLC with fluorescence detection. Maximum cellular abundance and growth were obtained at an N:P ratio of 64:1 (3188 cells mL-1 and 0.34 div day-1) with the BAMAZ and BAPAZ strains. A total of ten saxitoxin analogs dominated by N-sulfocarbamoyl (60-90 mol%), decarbamoyl (10-20 mol%), and carbamoyl (5-10 mol%) toxins were detected. The different N:P ratios did not cause significant changes in the PST content or toxin profiles of the strains from both bays, although they did affect cell abundance.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Toxinas Biológicas , Animais , Cromatografia Líquida de Alta Pressão , Mamíferos , Saxitoxina/análise
19.
Biochem J ; 430(1): 97-105, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20518745

RESUMO

SHMT (serine hydroxymethyltransferase; EC 2.1.2.1) catalyses reversible hydroxymethyl group transfer from serine to H4PteGlun (tetrahydrofolate), yielding glycine and 5,10-methylenetetrahydrofolate. In plastids, SHMTs are thought to catalytically direct the hydroxymethyl moiety of serine into the metabolic network of H4PteGlun-bound one-carbon units. Genes encoding putative plastid SHMTs were found in the genomes of various plant species. SHMT activity was detected in chloroplasts in pea (Pisum sativum) and barley (Hordeum vulgare), suggesting that plastid SHMTs exist in all flowering plants. The Arabidopsis thaliana genome encodes one putative plastid SHMT (AtSHMT3). Its cDNA was cloned by reverse transcription-PCR and the encoded recombinant protein was produced in Escherichia coli. Evidence that AtSHMT3 is targeted to plastids was found by confocal microscopy of A. thaliana protoplasts transformed with proteins fused to enhanced green fluorescent protein. Characterization of recombinant AtSHMT3 revealed that substrate affinity for and the catalytic efficiency of H4PteGlu1-8 increase with n, and that H4PteGlu1-8 inhibit AtSHMT3. 5-Methyltetrahydrofolate and 5-formyltetrahydrofolate with one and five glutamate residues inhibited AtSHMT3-catalysed hydroxymethyl group transfer from serine to H4PteGlu6, with the pentaglutamylated inhibitors being more effective. Calculations revealed inhibition with 5-methyltetrahydrofolate or 5-formyltetrahydrofolate resulting in little reduction in AtSHMT3 activity under folate concentrations estimated for plastids.


Assuntos
Arabidopsis/enzimologia , Glicina Hidroximetiltransferase/metabolismo , Pisum sativum/enzimologia , Plastídeos/enzimologia , Biologia Computacional , DNA Complementar/genética , Glicina Hidroximetiltransferase/genética , Proteínas de Fluorescência Verde/genética , Cinética , Filogenia , Protoplastos/enzimologia , Ácidos Pteroilpoliglutâmicos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Tetra-Hidrofolatos/metabolismo
20.
J Environ Biol ; 32(4): 413-23, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22315821

RESUMO

Historical documents and classic works together with recent specialized literature have described Harmful Algal Blooms (HABs) in the Gulf of California. This is a review of HABs impact (qualitative and quantitative) during the last decades in the Gulf of California on wild (mammals, birds, fishes, and invertebrates) and cultured animals (shrimps and fishes). Microalgal species responsible of noxious effects are Noctiluca scintillans, Cochlodinium polykrikoides, Gymnodinium catenatum, Prorocentrum minimum, Akashiwo sanguinea, Chattonella subsalsa Ch. marina, Chattonella sp., Heterocapsa sp., Dinophysis sp., Fibrocapsa japonica, Heterosigma akashiwo, Thalassiosira sp., Chaetoceros spp., Pseudo-nitzschia australis, P fraudulenta, Pseudo-nitzschia sp., Trichodesmium erythraeum and ScSchizotrix calcicola. Emphasis is given to the necessity to continue with interdisciplinary studies in oceanography, ecology, toxicology and toxinology interrelated with biomedical sciences such as physiology, pathology, epidemiology and animal health.


Assuntos
Animais Selvagens , Aquicultura , Proliferação Nociva de Algas/fisiologia , Animais , Oceano Pacífico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA