Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 619(7968): 160-166, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37258666

RESUMO

KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients1-7. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation. Here we report the discovery and characterization of a non-covalent inhibitor that binds preferentially and with high affinity to the inactive state of KRAS while sparing NRAS and HRAS. Although limited to only a few amino acids, the evolutionary divergence in the GTPase domain of RAS isoforms was sufficient to impart orthosteric and allosteric constraints for KRAS selectivity. The inhibitor blocked nucleotide exchange to prevent the activation of wild-type KRAS and a broad range of KRAS mutants, including G12A/C/D/F/V/S, G13C/D, V14I, L19F, Q22K, D33E, Q61H, K117N and A146V/T. Inhibition of downstream signalling and proliferation was restricted to cancer cells harbouring mutant KRAS, and drug treatment suppressed KRAS mutant tumour growth in mice, without having a detrimental effect on animal weight. Our study suggests that most KRAS oncoproteins cycle between an active state and an inactive state in cancer cells and are dependent on nucleotide exchange for activation. Pan-KRAS inhibitors, such as the one described here, have broad therapeutic implications and merit clinical investigation in patients with KRAS-driven cancers.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Animais , Camundongos , Peso Corporal , Ativação Enzimática , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Nucleotídeos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Especificidade por Substrato
2.
Nucleic Acids Res ; 48(6): 3089-3102, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32030426

RESUMO

Long non-coding RNAs (lncRNAs) have emerged as important biological tuners. Here, we reveal the role of an uncharacterized lncRNA we call SENEBLOC that is expressed by both normal and transformed cells under homeostatic conditions. SENEBLOC was shown to block the induction of cellular senescence through dual mechanisms that converge to repress the expression of p21. SENEBLOC facilitates the association of p53 with MDM2 by acting as a scaffold to promote p53 turnover and decrease p21 transactivation. Alternatively, SENEBLOC was shown to affect epigenetic silencing of the p21 gene promoter through regulation of HDAC5. Thus SENEBLOC drives both p53-dependent and p53-independent mechanisms that contribute to p21 repression. Moreover, SENEBLOC was shown to be involved in both oncogenic and replicative senescence, and from the perspective of senolytic agents we show that the antagonistic actions of rapamycin on senescence are dependent on SENEBLOC expression.


Assuntos
Envelhecimento/genética , Neoplasias/genética , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53/genética , Animais , Carcinogênese/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Xenoenxertos , Histona Desacetilases/genética , Humanos , Camundongos , Ligação Proteica/genética , Transdução de Sinais/genética
3.
Proc Natl Acad Sci U S A ; 115(50): E11661-E11670, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478051

RESUMO

Long noncoding RNAs (lncRNAs) function through a diverse array of mechanisms that are not presently fully understood. Here, we sought to find lncRNAs differentially regulated in cancer cells resistant to either TNF-related apoptosis-inducing ligand (TRAIL) or the Mcl-1 inhibitor UMI-77, agents that act through the extrinsic and intrinsic apoptotic pathways, respectively. This work identified a commonly up-regulated lncRNA, ovarian adenocarcinoma-amplified lncRNA (OVAAL), that conferred apoptotic resistance in multiple cancer types. Analysis of clinical samples revealed OVAAL expression was significantly increased in colorectal cancers and melanoma in comparison to the corresponding normal tissues. Functional investigations showed that OVAAL depletion significantly inhibited cancer cell proliferation and retarded tumor xenograft growth. Mechanically, OVAAL physically interacted with serine/threonine-protein kinase 3 (STK3), which, in turn, enhanced the binding between STK3 and Raf-1. The ternary complex OVAAL/STK3/Raf-1 enhanced the activation of the RAF protooncogene serine/threonine-protein kinase (RAF)/mitogen-activated protein kinase kinase 1 (MEK)/ERK signaling cascade, thus promoting c-Myc-mediated cell proliferation and Mcl-1-mediated cell survival. On the other hand, depletion of OVAAL triggered cellular senescence through polypyrimidine tract-binding protein 1 (PTBP1)-mediated p27 expression, which was regulated by competitive binding between OVAAL and p27 mRNA to PTBP1. Additionally, c-Myc was demonstrated to drive OVAAL transcription, indicating a positive feedback loop between c-Myc and OVAAL in controlling tumor growth. Taken together, these results reveal that OVAAL contributes to the survival of cancer cells through dual mechanisms controlling RAF/MEK/ERK signaling and p27-mediated cell senescence.


Assuntos
Senescência Celular/genética , Senescência Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Sistema de Sinalização das MAP Quinases , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Xenoenxertos , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Nus , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina-Treonina Quinase 3 , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
4.
Mol Carcinog ; 54(11): 1252-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25156912

RESUMO

The identification of genes involved in carcinogenesis and tumor progression is of great interest, since these genes might be possible as candidates for new tumor targeted therapy strategies. Our previous study shows that Golgi phosphoprotein 3 (GOLPH3) is involved in glioma cell migration and invasion, the critical characteristics of malignant gliomas. In this study, we explored the mechanism of GOLPH3 affecting cell migration and invasion and found that GOLPH3 promotes glioblastoma (GBM) cell migration and invasion via the mammalian target of rapamycin(mTOR)-Y-box binding protein-1 (YB1) pathway in vitro. Both the protein levels of GOLPH3 and YB1 were up-regulated in human glioma tissues and they exhibited direct correlation with each other. In addition, down-regulation of GOLPH3 inhibited glioma cell migration and invasion, while over-expression of GOLPH3 enhanced them. Meanwhile, GOLPH3 down-regulation led to a significant decrease of YB1 level as well as mTOR activity, both required for glioma cell migration and invasion. On the contrary, YB1 level and mTOR activity increased after GOLPH3 over-expression. YB1 down-regulation or mTOR ATP site inhibitor INK128 treatment inhibited cell migration and invasion, similar to the effect of GOLPH3 down-regulation. Furthermore, over-expression of GOLPH3 induced glioma cell migration and invasion was blocked by INK128 and YB1 down-regulation. Taken together, these results show that GOLPH3 promotes glioblastoma cell migration and invasion via the mTOR-YB1pathway, indicating that GOLPH3-mTOR-YB1 pathway might be a new therapeutic target for glioma treatment.


Assuntos
Movimento Celular/genética , Glioblastoma/genética , Proteínas de Membrana/genética , Invasividade Neoplásica/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Proteína 1 de Ligação a Y-Box/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Humanos , Regulação para Cima/genética
5.
J Neurooncol ; 125(1): 113-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26341367

RESUMO

Drosophila lethal (2) giant larvae (lgl) has been reported as a tumor suppressor and could regulate the Drosophila hippo signaling. Human giant larvae-1(Hugl-1), one human homologue of Drosophila lgl, also has been reported to be involved in the development of some human cancers. However, whether Hugl-1 is associated with the pathogenesis of malignant gliomas remains poorly understood. In the present work, we examined the effect of Hugl-1 on glioma cell growth both in vitro and in vivo. Firstly, we found that Hugl-1 protein levels decreased in the human glioma tissues, suggesting that Hugl-1 is involved in glioma progression. Unfortunately, either stably or transiently over-expressing Hugl-1 did not affect glioma cell proliferation in vitro. In addition, Hugl-1 over-expression did not regulate hippo signaling pathway. Interestingly, over-expression of Hugl-1 not only inhibited gliomagenesis but also markedly inhibited cell proliferation and promoted the apoptosis of U251 cells in an orthotopic model of nude mice. Taken together, this study provides the evidence that Hugl-1 inhibits glioma cell growth in intracranial model of nude mice, suggesting that Hugl-1 might be a potential tumor target for glioma therapy.


Assuntos
Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Proteínas do Citoesqueleto/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Nus , Compostos de Fenilureia/metabolismo , Sincalida/metabolismo , Transfecção
6.
J Neurooncol ; 112(3): 365-74, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475391

RESUMO

Glioblastoma multiforme is a highly migratory and invasive brain tumor in which hypoxia inducible factor-1α (HIF-1α) plays important roles. However, the underlying mechanisms regulating the action of HIF-1α in glioma cell migration and invasion ability remain unclear. We reported here that HIF-1α was regulated by geranylgeranyltransferase I (GGTI), a protein prenylation transferase, and then promoted glioma cell migration and invasion. The migratory and invasive ability of glioma cells were enhanced by hypoxia treatment but inhibited by down-regulation of HIF-1α. GGTI activity inhibition or GGTI specific ß subunit (GGTI ß) knocking-down decreased HIF-1α protein level. In addition, down-regulation of GGTI ß inhibited migration and invasion of glioma cells under hypoxia, while GGTI ß over-expression promoted it. Furthermore, the effect of GGTI ß over-expression on cell migration and invasion was abolished by HIF-1α down-regulation. In summary, our study showed, for the first time, that HIF-1α was regulated by protein prenylation transferase GGTI and mediated the effect of GGTI on glioma cell migration and invasion.


Assuntos
Alquil e Aril Transferases/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Invasividade Neoplásica , Western Blotting , Neoplasias Encefálicas/patologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Glioblastoma/patologia , Humanos , RNA Interferente Pequeno , Transfecção
7.
Science ; 381(6659): 794-799, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590355

RESUMO

The discovery of small-molecule inhibitors requires suitable binding pockets on protein surfaces. Proteins that lack this feature are considered undruggable and require innovative strategies for therapeutic targeting. KRAS is the most frequently activated oncogene in cancer, and the active state of mutant KRAS is such a recalcitrant target. We designed a natural product-inspired small molecule that remodels the surface of cyclophilin A (CYPA) to create a neomorphic interface with high affinity and selectivity for the active state of KRASG12C (in which glycine-12 is mutated to cysteine). The resulting CYPA:drug:KRASG12C tricomplex inactivated oncogenic signaling and led to tumor regressions in multiple human cancer models. This inhibitory strategy can be used to target additional KRAS mutants and other undruggable cancer drivers. Tricomplex inhibitors that selectively target active KRASG12C or multiple RAS mutants are in clinical trials now (NCT05462717 and NCT05379985).


Assuntos
Produtos Biológicos , Ciclofilina A , Imunofilinas , Chaperonas Moleculares , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Cisteína/química , Cisteína/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Ciclofilina A/química , Ciclofilina A/metabolismo , Imunofilinas/química , Imunofilinas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
8.
Oncol Lett ; 21(2): 167, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552285

RESUMO

Human giant larvae-1 (Hugl-1) is a human homologue of Drosophila tumor suppressor lethal (2)-giant larvae and has been reported to be involved in the development of human malignancies. Previous studies performed by our group demonstrated that Hugl-1 inhibits glioma cell proliferation in an intracranial model of nude mice. However, the exact molecular mechanisms underlying the participation of Hugl-1 in glioma invasion and migration, and in the depolarizing process remain largely unknown. Utilizing the U251-MG cells with stable expression of Hugl-1, the present study used wound healing, Transwell invasion and western blot assays to explore the role and specific mechanism of Hugl-1 in glioma invasion and migration. The results of the present study demonstrated that overexpression of Hugl-1 decreased cell-cell adhesion and increased cell-cell extracellular matrix adhesion. In addition, overexpression of Hugl-1 promoted pseudopodia formation, glioma cell migration and invasion. The molecular mechanism of action involved the negative regulation of N-cadherin protein levels by Hugl-1. Overexpression or knockdown of N-cadherin partially suppressed or enhanced the effects of Hugl-1 on glioma cell migration and invasion, respectively. Furthermore, Hugl-1 inhibited cell proliferation, while promoting cell migration, which suggests that it may serve a two-sided biological role in cellular processes. Taken together, these results suggest that Hugl-1 promotes the migration and invasion of malignant glioma cells by decreasing N-cadherin expression. Thus, Hugl-1 may be applied in the development of targeted and personalized treatment.

9.
Life Sci ; 225: 55-63, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30946839

RESUMO

BACKGROUND/AIMS: Acetylation of H4 at lysine 16 (H4K16ac) has been well-characterized as an acetylated mark, and the expression of which is closely associated with the tumorigenesis of human cancers. This study aimed to reveal whether KRas mutation drives the initiation and progression of glioma via modulation of H4 acetylation. METHODS: Changes of H4K16 acetylation in human glioblastoma A172 cells following transfection with a plasmid for expression of mutant KRas were tested by western blot analysis. MTT assay, transwell assay, soft-agar colony formation assay, RT-PCR and chromatin immunoprecipitation were carried out to evaluate the effect of H4K16ac on A172 cells growth and migration. Furthermore, the enzymes participating in the deacetylation of H4K16ac were studied by using RT-PCR and western blot analysis. RESULTS: H4K16ac was found to be deacetylated by KRas-ERK1/2 activation. H4K16Q (a plasmid for mimicking H4K16ac) repressed A172 cells viability, colony formation, and migratory capacity. Besides, H4K16ac was capable of regulating the transcription of several ERK1/2 pathway downstream genes. KRas-ERK1/2 signaling repressed H4 acetylation at K16 via modulation of a histone deacetylase Sirt2, as well as a histone acetyl-transferase TIP60. Moreover, KRas-ERK1/2 inhibited TIP60 via an MDM2-dependnet fashion. CONCLUSION: Our results suggest that activation of KRas-ERK1/2 signaling participates in the onset and progression of glioma at least partially through modulating acetylation of H4 at K16. KRas-ERK1/2 signaling mediates the acetylation of H4K16 via Sirt2 and MDM2-dependnet degeneration of TIP60.


Assuntos
Glioma/patologia , Histonas/metabolismo , Lisina/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Acetilação , Apoptose , Movimento Celular , Proliferação de Células , Glioma/genética , Glioma/metabolismo , Histonas/genética , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Células Tumorais Cultivadas
10.
Artif Cells Nanomed Biotechnol ; 47(1): 2882-2890, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31307224

RESUMO

Background: Histone H1.5 has been considered as a novel cancer marker as its expression is associated with various human cancers. The objective of this study was to explore the effects of H1.5 phosphorylation in Ras-driven growth and migration of glioma cells. Methods: The plasmids for expression of wide-type of Ras or RasG12V/Y40C were transfected into A172 cells. The expression levels of phosphorylated AKT and H1.5T10ph were tested by Western blot. The effects of H1.5T10ph on A172 cells growth and migration were determined by MTT, soft-agar colony formation, and transwell assay. qRT-PCR and ChIP assay were utilized to assess the role of H1.5T10ph in the transcription of Ras downstream genes. Besides, qRT-PCR and Western blot analysis were carried out to reveal the enzymes which were responsible for phosphorylating H1.5. Results: H1.5T10ph was down-regulated by Ras mutation, which accompanied by the activation of AKT signaling. Ras-driven A172 cells growth and migration were inhibited when H1.5T10ph was overexpressed. Additionally, H1.5T10ph was able to regulate the transcription of Ras downstream genes, including CYR61, IGFBP3, WNT16B, NT5E, GDF15, and CARD16. Further experiments revealed that Ras-AKT signaling repressed H1.5T10ph expression through degradation of GSK3, and the degradation was dependent on MDM2 mediation. Conclusion: Ras-AKT signaling driven the growth and migration of glioma cells possibly through repressing the phosphorylation of H1.5 at threonine 10. Ras-AKT activation repressed H1.5T10ph through MDM2-dependent degradation of GSK3. The findings provide a better understanding of Ras's oncogenic functions which further suggest Ras as a therapeutic target for glioma.


Assuntos
Progressão da Doença , Glioma/patologia , Quinase 3 da Glicogênio Sintase/metabolismo , Histonas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Treonina/metabolismo , Proteínas ras/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Histonas/química , Humanos , Fosforilação , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Transcrição Gênica
12.
J Mol Neurosci ; 49(1): 130-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23073905

RESUMO

Geranylgeranyltransferase I (GGTase-I) is responsible for the posttranslational lipidation of several signaling proteins such as RhoA, Rac1, and Cdc42, which contribute to tumor development and metastasis. However, the role of GGTase-I in the progression of human glioma is largely unknown. Here, we provide the evidence that Rac1 mediates the effects of GGTase-I on the proliferation and apoptosis in human glioma cells. We found that GGTase-I was abundantly expressed in human primary glioma tissues. Inhibition or downregulation of GGTase-I markedly decreased the proliferation of glioma cells and induced their apoptosis, while overexpression of GGTase-I promoted cell growth in vitro. Inactivation of GGTase-I eliminated geranylgeranylation of RhoA and Rac1, prevented them from targeting to the plasma membrane, and inhibited Rac1 activity. Furthermore, overexpressing wild type or constitutively active Rac1 stimulated glioma cell growth, similar to the effect of GGTase-I overexpression. Importantly, overexpressing dominant-negative Rac1 or Rac1 with the prenylation site deleted or mutated abrogated GGTase-I-induced proliferation in glioma cells. These results confirm the view that geranylgeranylation is essential to the activity and localization of Rho family proteins and suggest that Rac1 is required for GGTase-I-mediated glioma growth.


Assuntos
Alquil e Aril Transferases/metabolismo , Neoplasias Encefálicas/enzimologia , Proliferação de Células , Glioma/enzimologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Alquil e Aril Transferases/genética , Apoptose , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Deleção de Genes , Glioma/patologia , Humanos , Mutação , Prenilação , Transporte Proteico , RNA Interferente Pequeno , Proteínas rac1 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA