Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410517, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896017

RESUMO

Electrochemical nitrogen oxide ions reduction reaction (NOx-RR) shows great opportunity for ammonia production under ambient conditions. Yet, performing NOx-RR in strong acidic conditions remains challenging due to the corrosion effect on the catalyst and competing hydrogen evolution reactions. Here, we demonstrate a stable La1.5Sr0.5Ni0.5Fe0.5O4 perovskite oxide for the NOx-RR at pH 0, achieving a Faradaic efficiency for ammonia of approaching 100% at a current density of 2 A cm-2 in a H-type cell. At industrially relevant current density, the NOx-RR system shows stable cell voltage and Faradaic efficiency for >350 h in membrane electrode assembly (MEA) at pH 0. By integrating the catalyst in a stacked MEA with a series connection, we have successfully obtained a record-breaking 2.578 g h-1 NH3 production rate at 20 A. This catalyst's unique acid-operability streamlines downstream ammonia utilization for direct ammonium salt production and upstream integration with NOx sources. Techno-economic and lifecycle assessments reveal substantial economic advantages for this ammonia production strategy, even when coupled with a plasma-based NOx production system, presenting a sustainable complement to the conventional Haber-Bosch process.

2.
J Am Chem Soc ; 143(1): 269-278, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33373209

RESUMO

Photocatalysis provides an intriguing approach for the conversion of methane to multicarbon (C2+) compounds under mild conditions; however, with methyl radicals as the sole reaction intermediate, the current C2+ products are dominated by ethane, with a negligible selectivity toward ethylene, which, as a key chemical feedstock, possesses higher added value than ethane. Herein, we report a direct photocatalytic methane-to-ethylene conversion pathway involving the formation and dehydrogenation of alkoxy (i.e., methoxy and ethoxy) intermediates over a Pd-modified ZnO-Au hybrid catalyst. On the basis of various in situ characterizations, it is revealed that the Pd-induced dehydrogenation capability of the catalyst holds the key to turning on the pathway. During the reaction, methane molecules are first dissociated into methoxy on the surface of ZnO under the assistance of Pd. Then these methoxy intermediates are further dehydrogenated and coupled with methyl radical into ethoxy, which can be subsequently converted into ethylene through dehydrogenation. As a result, the optimized ZnO-AuPd hybrid with atomically dispersed Pd sites in the Au lattice achieves a methane conversion of 536.0 µmol g-1 with a C2+ compound selectivity of 96.0% (39.7% C2H4 and 54.9% C2H6 in total produced C2+ compounds) after 8 h of light irradiation. This work provides fresh insight into the methane conversion pathway under mild conditions and highlights the significance of dehydrogenation for enhanced photocatalytic activity and unsaturated hydrocarbon product selectivity.

3.
Sci Adv ; 10(26): eado4390, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941471

RESUMO

Light-driven oxidative coupling of methane (OCM) for multi-carbon (C2+) product evolution is a promising approach toward the sustainable production of value-added chemicals, yet remains challenging due to its low intrinsic activity. Here, we demonstrate the integration of bismuth oxide (BiOx) and gold (Au) on titanium dioxide (TiO2) substrate to achieve a high conversion rate, product selectivity, and catalytic durability toward photocatalytic OCM through rational catalytic site engineering. Mechanistic investigations reveal that the lattice oxygen in BiOx is effectively activated as the localized oxidant to promote methane dissociation, while Au governs the methyl transfer to avoid undesirable overoxidation and promote carbon─carbon coupling. The optimal Au/BiOx-TiO2 hybrid delivers a conversion rate of 20.8 millimoles per gram per hour with C2+ product selectivity high to 97% in the flow reactor. More specifically, the veritable participation of lattice oxygen during OCM is chemically looped by introduced dioxygen via the Mars-van Krevelen mechanism, endowing superior catalyst stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA