Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(21): e2104282119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35576470

RESUMO

Malaria control interventions target nocturnal feeding of the Anopheles vectors indoors to reduce parasite transmission. Mass deployment of insecticidal bed nets and indoor residual spraying with insecticides, however, may induce mosquitoes to blood-feed at places and at times when humans are not protected. These changes can set a ceiling to the efficacy of these control interventions, resulting in residual malaria transmission. Despite its relevance for disease transmission, the daily rhythmicity of Anopheles biting behavior is poorly documented, most investigations focusing on crepuscular hours and nighttime. By performing mosquito collections 48-h around the clock, both indoors and outdoors, and by modeling biting events using circular statistics, we evaluated the full daily rhythmicity of biting in urban Bangui, Central African Republic. While the bulk of biting by Anopheles gambiae, Anopheles coluzzii, Anopheles funestus, and Anopheles pharoensis occurred from sunset to sunrise outdoors, unexpectedly ∼20 to 30% of indoor biting occurred during daytime. As biting events did not fully conform to any family of circular distributions, we fitted mixtures of von Mises distributions and found that observations were consistent with three compartments, corresponding indoors to populations of early-night, late-night, and daytime-biting events. It is not known whether these populations of biting events correspond to spatiotemporal heterogeneities or also to distinct mosquito genotypes/phenotypes belonging consistently to each compartment. Prevalence of Plasmodium falciparum in nighttime- and daytime-biting mosquitoes was the same. As >50% of biting occurs in Bangui when people are unprotected, malaria control interventions outside the domiciliary environment should be envisaged.


Assuntos
Anopheles , Ritmo Circadiano , Comportamento Alimentar , Mordeduras e Picadas de Insetos , Malária , Controle de Mosquitos , Animais , Anopheles/parasitologia , Anopheles/fisiologia , República Centro-Africana , Humanos , Mordeduras e Picadas de Insetos/parasitologia , Malária/prevenção & controle , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores , Plasmodium falciparum/isolamento & purificação
3.
Pathog Glob Health ; 112(7): 349-359, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30433868

RESUMO

Malaria remains the main cause of mortality and morbidity in the Central African Republic. However, the main malaria vectors remain poorly characterised, preventing the design of suitable control strategies. Here, we characterised the patterns and mechanisms of insecticide resistance in three important vectors from Bangui. Mosquitoes were collected indoors, using electrical aspirators in July 2016 in two neighborhoods at Bangui. WHO bioassays performed, using F2 An. gambiae sensu lato (s.l.), revealed a high level of resistance to type I (permethrin) and II (deltamethrin) pyrethroids and dichlorodiphenyltrichloroethane (< 3% mortality). Molecular analysis revealed the co-occurrence of Anopheles coluzzii (56.8 %) and An. gambiae s.s. (43.2%) within the An. gambiae complex. Anopheles funestus s.s. was the sole species belonging to An. funestus group. Both kdr-w (40% of homozygotes and 60% of heterozygotes/kdr-w/wild type) and kdr-e (37.5% of heterozygotes) mutations were found in An. gambiae. Contrariwise, only the kdr-w (9.5% homozygotes and 85.7% of heterozygotes) was detected in An. coluzzii. Quantitative RT-PCR showed that CYP6M2 and CYP6P3 are not upregulated in An. coluzzii from Bangui. Analysis of the sodium channel gene revealed a reduced diversity in An. coluzzii and An. gambiae s.s. In An. funestus s.s., the pyrethroid/DDT GSTe2 L119F resistance allele was detected at high frequency (54.7%) whereas a very low frequency for Rdl was observed. Polymorphism analysis of GSTe2 and GABA receptor gene in An. funestus revealed the presence of one resistant haplotype for each gene. This study provides baseline information to help guide current and future malaria vector control interventions in CAR.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Animais , Bioensaio , República Centro-Africana , Resistência a Inseticidas/efeitos dos fármacos , Resistência a Inseticidas/fisiologia , Malária/epidemiologia , Malária/prevenção & controle , Malária/transmissão , Taxa de Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA