Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766734

RESUMO

microRNAs are ~22bp nucleotide non-coding RNAs that play important roles in the post-transcriptional regulation of gene expression. Many studies have established that microRNAs are important for cell fate choices, including the naïve to primed pluripotency state transitions, and their intermediate state, the developmentally suspended diapause state in early development. However, the full extent of microRNAs associated with these stage transitions in human and mouse remain under-explored. By meta-analysis of microRNA-seq, RNA-seq, and metabolomics datasets from human and mouse, we found a set of microRNAs, and importantly, their experimentally validated target genes that show consistent changes in naïve to primed transitions (microRNA up, target genes down, or vice versa). The targets of these microRNAs regulate developmental pathways (e.g., the Hedgehog-pathway), primary cilium, and remodeling of metabolic processes (oxidative phosphorylation, fatty acid metabolism, and amino acid transport) during the transition. Importantly, we identified 115 microRNAs that significantly change in the same direction in naïve to primed transitions in both human and mouse, many of which are novel candidate regulators of pluripotency. Furthermore, we identified 38 microRNAs and 274 target genes that may be involved in diapause, where embryonic development is temporarily suspended prior to implantation to uterus. The upregulated target genes suggest that microRNAs activate stress response in the diapause stage. In conclusion, we provide a comprehensive resource of microRNAs and their target genes involved in naïve to primed transition and in the paused intermediate, the embryonic diapause stage.


Assuntos
Bases de Dados Genéticas , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , MicroRNAs/biossíntese , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/citologia
2.
iScience ; 25(10): 105171, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36204266

RESUMO

Interaction with microenvironmental factors is crucial for the regulation of hematopoietic stem cell (HSC) function. Stroma derived factor (SDF)-1α supports HSCs in the quiescent state and is central to the homing of transplanted HSCs. Here, we show that integrin signaling regulates Sdf-1α expression transcriptionally. Systemic deletion of Periostin, an Integrin-αv ligand, showed increased expression of Sdf-1α in bone marrow (BM) niche. Pharmacological inhibition or CRISPR-Cas9-mediated deletion of SRC, resulted in a similar increase in the chemokine expression in vitro. Importantly, systemic SRC-inhibition led to increase in SDF-1α levels in BM plasma. This resulted in a robust increase (14.05 ± 1.22% to 29.11 ± 0.69%) in the homing efficiency of transplanted HSCs. In addition, we observed enhancement in the recovery of blood cell counts following radiation injury, indicating an enhanced hematopoietic function. These results establish a role of SRC-mediated integrin signaling in the transcriptional regulation of Sdf-1α. This mechanism could be harnessed further to improve the hematopoietic function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA