RESUMO
Exploring the relationship between thermal expansion and structural complexity is a challenging topic in the study of modern materials where volume stability is required. This work reports a new family of negative thermal expansion (NTE) materials, AM(CN)4 with A = Li and Na and M = B, Al, Ga, and In. Here, the compounds of LiB(CN)4 and NaB(CN)4 were only synthesized; others were purely computationally studied. A critical role of nonrigid vibrational modes and spiral acoustical modes has been identified in NaB(CN)4. This understanding has been exploited to design the colossal NTE materials of NaM(CN)4 (M = Al, Ga, In). A joint study involving synchrotron X-ray diffraction, Raman spectroscopy, and first-principles calculations has been conducted to investigate the thermal expansion mechanism. It has been found that the A atoms can either increase the symmetry of the crystal structure, inducing stronger NTE, or lower the crystal symmetry, thus resulting in positive thermal expansion. Conversely, the M-site atoms do not affect the crystal structure. However, as the radius of the M atoms increases, the ionic nature of the C-M bonds strengthens and the CN vibrations become more flexible, thereby enhancing the NTE behavior. This study provides new insights to aid in the discovery and design of novel NTE materials and the control of thermal expansion.
RESUMO
The high-entropy strategy has shown potential in advancing the energy-storage performance of dielectric capacitors, offering benefits to a range of electronic and electrical systems. However, designing high-performance high-entropy relaxor ferroelectrics (RFEs) presents challenges due to the unclear correlation between their core effects and local polarization heterogeneity. Here, we demonstrate that by engineering the local lattice distortion, a core effect in high-entropy systems, to manipulate the local polarization configuration, a giant energy density (Wrec) of 18.7 J cm-3 and high efficiency (η) of 85% can be achieved in (Bi0.5K0.5)TiO3-based high-entropy bulk RFE ceramics. Atomic-level local structural analysis unveils that the local lattice distortion field can be flattened by introducing ions with less size mismatch. The increase in configurational entropy from 1.54 to 2.06R is associated with a smoother polar displacement vector field and a reduction in the size of polar clusters to several unit-cell sizes with weak coupling. Consequently, a substantial decrease in hysteresis and an enhancement in the breakdown field strength can be obtained, leading to a significant improvement in energy density by over 6 times and efficiency by 3 times. Our research establishes a relationship between local lattice distortion, atomic polar displacement, and energy-storage performance in complex high-entropy systems, providing insights for enhancing energy-storage performance via a local structure design.
RESUMO
ABO3-type perovskite relaxor ferroelectrics (RFEs) have emerged as the preferred option for dielectric capacitive energy storage. However, the compositional design of RFEs with high energy density and efficiency poses significant challenges owing to the vast compositional space and the absence of general rules. Here, we present an atomic-level chemical framework that captures inherent characteristics in terms of radius and ferroelectric activity of ions. By categorizing A/B-site ions as host framework, rattling, ferroelectrically active, and blocking ions and assembling these four types of ions with specific criteria, linear-like relaxors with weak locally correlated and highly extendable unit-cell polarization vectors can be constructed. As example, we demonstrate two new compositions of Bi0.5K0.5TiO3-based and BaTiO3-based relaxors, showing extremely high recoverable energy densities of 17.3 and 12.1 J cm-3, respectively, both with a high efficiency of about 90%. Further, the role of different types of ions in forming heterogeneous polar structures is identified through element-specific local structure analysis using neutron total scattering combined with reverse Monte Carlo modeling. Our work not only opens up new avenues toward rational compositional design of high energy storage performance lead-free RFEs but also sheds light on atomic-level manipulation of functional properties in compositionally complex ferroelectrics.
RESUMO
Negative thermal expansion (NTE) is crucial for controlling the thermomechanical properties of functional materials, albeit being relatively rare. This study reports a giant NTE (αV â¼-9.2 â 10-5 â K-1 , 100-200â K; αV â¼-3.7 â 10-5 â K-1 , 200-650â K) observed in NaB(CN)4 , showcasing interesting ultralight properties. A comprehensive investigation involving synchrotron X-ray diffraction, Raman spectroscopy, and first-principles calculations has been conducted to explore the thermal expansion mechanism. The findings indicate that the low-frequency phonon modes play a primary role in NTE, and non-rigid vibration modes with most negative Grüneisen parameters are the key contributing factor to the giant NTE observed in NaB(CN)4 . This work presents a new material with giant NTE and ultralight mass density, providing insights for the understanding and design of novel NTE materials.
RESUMO
The control of thermal expansion is an important and challenging issue. Focusing attention on the class of AMO5 negative thermal expansion (NTE) materials, an approach to control their thermal expansion is still missing. In this work, the thermal expansion of TaVO5 has been controlled from strong negative to zero to positive by double chemical substitution, i.e., Ti and Mo replace Ta and V elements, respectively. A joint study of temperature-dependent X-ray diffraction, X-ray photoelectron spectroscopy, and first-principles calculations has been performed to investigate the thermal expansion mechanism. With the increasing substitution of Ti and Mo atoms, the valence state always remains balanced, and the volume decreases together with a lattice distortion, which leads to the suppression of the NTE. Lattice dynamics calculations confirm that the negative Grüneisen parameters of the low-frequency modes weaken and the thermal vibrations of the polyhedral units diminish after the substitution of Ti and Mo atoms. The present work successfully achieves a tailored thermal expansion in TaVO5 and draws a possible way to control the thermal expansion of other NTE materials.
RESUMO
High structure flexibility can lead to large negative thermal expansion (NTE), but the reason is not clear. In this work, first-principles calculations have been carried out to investigate the relationship between NTE and structure flexibility in Zn(CN)2-type compounds. Smaller bulk modulus corresponds to larger compressibility, thus making the crystal structure more flexible and more suitable for NTE. It indicated that the ionic nature of the bond and the bond length jointly affect the structural flexibility and then act on the transverse vibration of C and N atoms. The results of lattice dynamic suggested that higher structural flexibility promotes a greater number of low-frequency optical modes with negative Grüneisen parameters, resulting in a larger NTE. This work also gives us new insight into the design of NTE materials.
RESUMO
A large negative thermal expansion (NTE) (αv = -4.1 × 10-5 K-1, 100-525 K) has been discovered in NdFe(CN)6. Here, the synchrotron X-ray diffraction and lattice dynamics calculations using the density functional theory were conducted to understand the NTE in NdFe(CN)6. The information obtained on the bond nature of the Nd-N≡C-Fe linkage and on the atomic thermal vibrations suggests that the transverse vibrations of the -N≡C- group, in particular from N atoms, produced the NTE in NdFe(CN)6. This is corroborated by the calculated Grüneisen parameters, which confirm the relationship between NTE and CN atomic vibrations. The results provide a helpful contribution toward the realization of new materials with negative or controllable thermal expansion.
RESUMO
Zn2GeO4 is a multifunctional material whose intrinsic thermal expansion properties below ambient temperature have not been explored until now. Herein, the thermal expansion of Zn2GeO4 is investigated by synchrotron X-ray diffraction, with the finding that Zn2GeO4 exhibits very low negative (αv = -2.02 × 10-6 K-1, 100-300 K) and positive (αv = +2.54 × 10-6 K-1, 300-475 K) thermal expansion below and above room temperature, respectively. A combined study of neutron powder diffraction and extended X-ray absorption fine structure spectroscopy shows that the negative thermal expansion (NTE) of Zn2GeO4 originates from the transverse vibrations of O atoms in the four- and six-membered rings with ZnO4-GeO4 tetrahedra. In addition, the results of temperature- and pressure-dependent Raman spectra identify the low-frequency phonon modes (50-150 cm-1) with negative Grüneisen parameters softening upon pressuring and stiffening upon heating during the lattice contraction, thus contributing to the NTE. This study not only reports the interesting thermal expansion behavior of Zn2GeO4 but also provides further insights into the NTE mechanism of novel structures.
RESUMO
Exploring isotropic negative thermal expansion (NTE) compounds is interesting, but remains challenging. Here, a new concept of "average atomic volume" is proposed to find new NTE open-framework materials. According to this guidance, two NTE compounds, AgB(CN)4 and CuB(CN)4, have been discovered, of which AgB(CN)4 exhibits a large NTE over a wide temperature range (αv = -40 × 10-6 K-1, 100-600 K). The analysis by extended X-ray absorption fine structure spectroscopy and first-principles calculation indicate that (i) the NTE driving force comes from the transverse vibrations of bridge chain atoms of C and N, corresponding to the low-frequency phonon modes; and (ii) the same transverse vibration direction of C and N atoms is a key factor for the occurrence of strong NTE in AgB(CN)4. The present concept of "average atomic volume" can be a simple parameter to explore new NTE compounds especially in those open-framework materials.
RESUMO
Negative thermal expansion (NTE) behaviors have been observed in various types of compounds. The achievement in the merits of promising low-cost and facile NTE oxides remains challenging. In the present work, a simple and low-cost Cu2P2O7 has been found to exhibit the strongest NTE among the oxides (αV â¼ -27.69 × 10-6 K-1, 5-375 K). The complex NTE mechanism has been investigated by the combined methods of high-resolution synchrotron X-ray diffraction, neutron powder diffraction, X-ray pair distribution function, extended X-ray absorption fine structure spectroscopy, and density functional theory calculations. Interesting, the direct experimental evidence reveals that the coupling twist and rotation of PO4 and CuO5 polyhedra are the inherent factors for the NTE nature of Cu2P2O7, which is triggered by the transverse vibrations of oxygen atoms. The present new NTE material of Cu2P2O7 also has been verified for the practical application.
RESUMO
Understanding the role of guest molecules in the lattice void of open-framework structures is vital for tailoring thermal expansion. Here, we take a new negative thermal expansion (NTE) compound, TiCo(CN)6, as a case study from the local structure perspective to investigate the effect of H2O molecules on thermal expansion. The in situ synchrotron X-ray diffraction results showed that the as-prepared TiCo(CN)6·2H2O has near-zero thermal expansion behavior (100-300 K), while TiCo(CN)6 without water in the lattice void exhibits a linear NTE (αl = -4.05 × 10-6 K-1, 100-475 K). Combined with the results of extended X-ray absorption fine structure, it was found that the intercalation of H2O molecules has the clear effect of inhibiting transverse thermal vibrations of Ti-N bonds, while the effect on the Co-C bonds is negligible. The present work displays the inhibition mechanism of H2O molecules on thermal expansion of TiCo(CN)6, which also provides insight into the thermal expansion control of other NTE compounds with open-framework structures.
RESUMO
The electronic and local structural properties of CuO under pressure have been investigated by means of X-ray absorption spectroscopy (XAS) at Cu K edge and ab initio calculations, up to 17 GPa. The crystal structure of CuO consists of Cu motifs within CuO4 square planar units and two elongated apical Cu-O bonds. The CuO4 square planar units are stable in the studied pressure range, with Cu-O distances that are approximately constant up to 5 GPa, and then decrease slightly up to 17 GPa. In contrast, the elongated Cu-O apical distances decrease continuously with pressure in the studied range. An anomalous increase of the mean square relative displacement (EXAFS Debye-Waller, σ2) of the elongated Cu-O path is observed from 5 GPa up to 13 GPa, when a drastic reduction takes place in σ2. This is interpreted in terms of local dynamic disorder along the apical Cu-O path. At higher pressures (P > 13 GPa), the local structure of Cu2+ changes from a 4-fold square planar to a 4+2 Jahn-Teller distorted octahedral ion. We interpret these results in terms of the tendency of the Cu2+ ion to form favorable interactions with the apical O atoms. Also, the decrease in Cu-O apical distance caused by compression softens the normal mode associated with the out-of-plane Cu movement. CuO is predicted to have an anomalous rise in permittivity with pressure as well as modest piezoelectricity in the 5-13 GPa pressure range. In addition, the near edge features in our XAS experiment show a discontinuity and a change of tendency at 5 GPa. For P < 5 GPa the evolution of the edge shoulder is ascribed to purely electronic effects which also affect the charge transfer integral. This is linked to a charge migration from the Cu to O, but also to an increase of the energy band gap, which show a change of tendency occurring also at 5 GPa.
RESUMO
The local symmetry, beyond the averaged crystallographic structure, tends to bring unusual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve controllable thermal expansion in ScF3 nanoscale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engineered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0 × 10-8/K up to 675 K. This mechanism is investigated by the joint analysis of atomic pair distribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortion presumably plays a critical role in stiffening ScF3 nanoscale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in rhombohedral ScF3. The present work opens an untraditional chemical modification route to achieve controllable thermal expansion by breaking local symmetries in materials.
RESUMO
The achievement of controlling thermal expansion is important for open-framework structures. The present work proposes a feasible way to adjust the coefficient of thermal expansion continuously from negative to positive via inserting guest Na+ ions or H2O molecules into a GaFe(CN)6 framework. The guest ions or molecules have an intense dampening effect on the transverse vibrations of CN atoms in the -Ga-N≡C-Fe- linkage, especially for the N atoms. This study demonstrates that electrochemical or redox intercalation of guest ions will be an effective way to tune thermal expansion in those negative thermal expansion open-framework materials induced by low-frequency phonons.
RESUMO
The understanding of the negative thermal expansion (NTE) mechanism is vital not only for the development of new NTE compounds but also for effectively controlling thermal expansion. Here, we report an interesting isotropic NTE property in cubic GaFe(CN)6 Prussian blue analogues (α l = -3.95 × 10-6 K-1, 100-475 K), which is a new example to understand the complex NTE mechanism. A combined study of synchrotron X-ray diffraction, X-ray total scattering, X-ray absorption fine structure, neutron powder diffraction, and density functional theory calculations shows that the NTE of GaFe(CN)6 originates from the low-frequency phonons (< â¼100 cm-1), which are directly related to the transverse vibrations of the atomic -Ga-N≡C-Fe- chains. Both the Ga-N and Fe-C chemical bonds are much softer to bend than to stretch. The direct evidence that transverse vibrational contribution to the NTE of GaFe(CN)6 is dominated by N, instead of C atoms, is illustrated. It is interesting to find that the polyhedra of GaFe(CN)6 are not rigid, which is a starting assumption in some models describing the NTE properties of other systems. The NTE mechanism can be vividly described by the "guitar-string" effect, which would be the common feature for the NTE property of many open-framework functional materials, such as Prussian blue analogues, oxides, cyanides, metal-organic frameworks, and zeolites.
RESUMO
Scandium fluoride (ScF3) exhibits a pronounced negative thermal expansion (NTE), which can be suppressed and ultimately transformed into an isotropic zero thermal expansion (ZTE) by partially substituting Sc with Fe in (Sc0.8Fe0.2)F3 (Fe20). The latter displays a rather small coefficient of thermal expansion of -0.17 × 10-6/K from 300 to 700 K. Synchrotron X-ray and neutron pair distribution functions confirm that the Sc/Fe-F bond has positive thermal expansion (PTE). Local vibrational dynamics based on extended X-ray absorption fine structure indicates a decreased anisotropy of relative vibration in the Sc/Fe-F bond. Combined analysis proposes a delicate balance between the counteracting effects of the chemical bond PTE and NTE from transverse vibration. The present study extends the scope of isotropic ZTE compounds and, more significantly, provides a complete local vibrational dynamics to shed light on the ZTE mechanism in chemically tailored NTE compounds.
RESUMO
The control of thermal expansion of solid compounds is intriguing but remains challenging. The effect of guests on the thermal expansion of open-framework structures was investigated. Notably, the presence of guest ions (K+ ) and molecules (H2 O) can substantially switch thermal expansion of YFe(CN)6 from negative (αv =-33.67×10-6 â K-1 ) to positive (αv =+42.72×10-6 â K-1 )-a range that covers the thermal expansion of most inorganic compounds. The mechanism of such substantial thermal expansion switching is revealed by joint studies with synchrotron X-ray diffraction, X-ray absorption fine structure, neutron powder diffraction, and density functional theory calculations. The presence of guest ions or molecules plays a critical damping effect on transverse vibrations, thus inhibiting negative thermal expansion. An effective method is demonstrated to control the thermal expansion in open-framework materials by adjusting the presence of guests.
RESUMO
The understanding of the negative thermal expansion (NTE) mechanism remains challenging but critical for the development of NTE materials. This study sheds light on NTE of ScF3, one of the most outstanding materials with NTE. The local dynamics of ScF3 has been investigated by a combined analysis of synchrotron-based X-ray total scattering, extended X-ray absorption fine structure, and neutron powder diffraction. Very interestingly, we observe that (i) the Sc-F nearest-neighbor distance strongly expands with increasing temperature, while the Sc-Sc next-nearest-neighbor distance contracts, (ii) the thermal ellipsoids of relative vibrations between Sc-F nearest-neighbors are highly elongated in the direction perpendicular to the Sc-F bond, indicating that the Sc-F bond is much softer to bend than to stretch, and (iii) there is mainly dynamically transverse motion of fluorine atoms, rather than static shifts. These results are direct experimental evidence for the NTE mechanism, in which the rigid unit is not necessary for the occurrence of NTE, and the key role is played by the transverse thermal vibrations of fluorine atoms through the "guitar-string" effect.
RESUMO
Grapevine berry skin is a complex structure that contributes to the final size and shape of the fruit and affects its quality traits. The organization of cell wall polysaccharides in situ and their modification during ripening are largely uncharacterized. The polymer structure of Corvina berry skin, its evolution during ripening and related modifying genes were determined by combing mid-infrared micro-spectroscopy and multivariate statistical analysis with transcript profiling and immunohistochemistry. Spectra were acquired in situ using a surface-sensitive technique on internal and external sides of the skin without previous sample pre-treatment, allowing comparison of the related cell wall polymer dynamics. The external surface featured cuticle-related bands; the internal surface showed more adsorbed water. Application of surface-specific normalization revealed the major molecular changes related to hemicelluloses and pectins in the internal surface and to cellulose and pectins in the external surface and that they occur between mid-ripening and full ripening in both sides of the skin. Transcript profiling of cell wall-modifying genes indicated a general suppression of cell wall metabolism during ripening. Genes related to pectin metabolism-a ß-galactosidase, a pectin(methyl)esterase and a pectate lyase-and a xyloglucan endotransglucosylase/hydrolase, involved in hemicellulose modification, showed enhanced expression. In agreement with Fourier transform infrared spectroscopy, patterns due to pectin methyl esterification provided new insights into the relationship between pectin modifications and the associated transcript profile during skin ripening. This study proposes an original description of polymer dynamics in grape berries during ripening, highlighting differences between the internal and external sides of the skin.
Assuntos
Celulose/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo , Vitis/crescimento & desenvolvimento , Vitis/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Imunofluorescência , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier , Vitis/genética , Água/metabolismoRESUMO
Negative thermal expansion (NTE) alloys possess great practical merit as thermal offsets for positive thermal expansion due to its metallic properties. However, achieving a large NTE with a wide temperature range remains a great challenge. Herein, a metallic framework-like material FeZr2 is found to exhibit a giant uniaxial (1D) NTE with a wide temperature range (93-1078 K, [Formula: see text]). Such uniaxial NTE is the strongest in all metal-based NTE materials. The direct experimental evidence and DFT calculations reveal that the origin of giant NTE is the couple with phonons, flexible framework-like structure, and soft bonds. Interestingly, the present metallic FeZr2 excites giant 1D NTE mainly driven by high-frequency optical branches. It is unlike the NTE in traditional framework materials, which are generally dominated by low energy acoustic branches. In the present study, a giant uniaxial NTE alloy is reported, and the complex mechanism has been revealed. It is of great significance for understanding the nature of thermal expansion and guiding the regulation of thermal expansion.