Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35321289

RESUMO

Background: Melittin has shown antiproliferative effects on tumor cells. Therefore, it comprises a valuable compound for studies on cancer treatment. To the best of our knowledge, no studies have reported melittin effects on bone metastasis. Herein, we propose an approach based on intrametastatic melittin injection to treat bone metastases in colorectal cancer. Methods: Following the characterization of melittin and antiproliferative tests in vitro, a single dose was injected through intrametastatic route into the mouse bone metastasis model. Following treatment, metastasis growth was evaluated. Results: A single dose of melittin was able to inhibit metastasis growth. Histological analysis showed necrosis and inflammatory processes in melittin-treated metastasis. Except by mild weight loss, no other systemic effects were observed. Conclusion: Our data suggest that melittin might be a promising agent for the future development of treatment strategies aiming to reduce the bone metastasis skeletal-related impact in colorectal cancer patients with bone metastasis.

2.
Oncotarget ; 13: 307-318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145607

RESUMO

Tumor cells trigger angiogenesis through the expression of angiogenic factors. Vasohibins (VASHs) are a family of peptides that regulate angiogenesis. Flavonoids have antiproliferative antitumor properties; however, few studies have highlighted their antiangiogenic potential. This study evaluated the flavonoid isoquercetin (Q3G) as an antitumor compound related to colon cancer vascularization and regulation of VASH1 and 2. Mice bearing xenogeneic colon cancer (n = 15) were divided into 3 groups: Q3G-treated (gavage, daily over a week), bevacizumab-treated (intraperitoneal, single dose), or untreated animals. Tumor growth, histological characteristics, blood vessel volume, and VASH1 and 2 expressions were analyzed. Q3G impaired tumor growth and vascularization, upregulated VASH1, and downregulated VASH2 in comparison to untreated animals. Mice treated with Q3G showed approximately 65% fewer blood vessels than untreated animals and 50% fewer blood vessels than mice treated with bevacizumab. Thus, we show that Q3G has antitumor activity, impairs vascularization, and differentially modulates VASH1 and 2 expressions in colon cancer.


Assuntos
Neoplasias do Colo , Neovascularização Patológica , Proteínas Angiogênicas/metabolismo , Animais , Bevacizumab/farmacologia , Proteínas de Ciclo Celular/metabolismo , Neoplasias do Colo/tratamento farmacológico , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Quercetina/análogos & derivados , Quercetina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
CNS Neurol Disord Drug Targets ; 18(5): 405-412, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30868970

RESUMO

BACKGROUND: Gliomas are aggressive and resilient tumors. Progression to advanced stages of malignancy, characterized by cell anaplasia, necrosis, and reduced response to conventional surgery or therapeutic adjuvant, are critical challenges in glioma therapy. Relapse of the disease poses a considerable challenge for management. Hence, new compounds are required to improve therapeutic response. As hydrolyzed rutin (HR), a compound modified via rutin deglycosylation, as well as some flavonoids demonstrated antiproliferative effect for glioblastoma, these are considered potential epigenetic drugs. OBJECTIVE: The purpose of this study was to determine the antitumor activity and evaluate the potential for modifying tumor aggressivity of rutin hydrolysates for treating both primary and relapsed glioblastoma. METHODS: The glioblastoma cell line, U251, was used for analyzing cell cycle inhibition and apoptosis and for establishing the GBM mouse model. Mice with GBM were treated with HR to verify antitumor activity. Histological analysis was used to evaluate HR interference in aggressive behavior and glioma grade. Immunohistochemistry, comet assay, and thiobarbituric acid reactive substance (TBARS) values were used to evaluate the mechanism of HR action. RESULTS: HR is an antiproliferative and antitumoral compound that inhibits the cell cycle via a p53- independent pathway. HR reduces tumor growth and aggression, mainly by decreasing mitosis and necrosis rates without genotoxicity, which is suggestive of epigenetic modulation. CONCLUSION: HR possesses antitumor activity and decreases anaplasia in glioblastoma, inhibiting progression to malignant stages of the disease. HR can improve the effectiveness of response to conventional therapy, which has a crucial role in recurrent glioma.


Assuntos
Anaplasia/complicações , Anaplasia/prevenção & controle , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/complicações , Glioblastoma/tratamento farmacológico , Rutina/farmacologia , Rutina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Hidrólise , Camundongos , Recidiva , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
4.
CNS Neurol Disord Drug Targets ; 17(1): 34-42, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29268692

RESUMO

BACKGROUND AND OBJECTIVE: This paper was based on a literature search of PubMed and Scielo databases using the keywords "Flavonoids, Neuroprotection, Quercetin, Rutin, Isoquercitrin, Alzheimer, Parkinson, Huntington" and combinations of all the words. METHOD: We collected relevant publications, during the period of 2000 to 2016, emphasizing in vivo and in vitro studies with neurological assessment of flavonol's potentials, as well as classifying studies according to evidence levels, in order to elucidate evidence-based literature and its application on clinical research. In addition, we highlight the importance of flavonols in modern research fields, indicating their neuroprotective potential and use thereof as preventive and therapeutic treatment of numerous neurodegenerative disease. Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and Huntington's disease, represent worldwide a major health problem with great financial impact. They are multifactorial diseases, hallmarked by similar pathogenesis that covers conditions such as oxidative stress, formation of free radicals, abnormal protein dynamics (degradation and aggregation), mitochondrial dysfunction, lipid peroxidation and cellular death or senescence. Flavonols are polyphenolic compounds, widely distributed in the plant kingdom and found in high concentrations in vegetables, fruits and teas. Their neuroprotective effects are mainly related to their antioxidant, anti-proliferative and anti-inflammatory properties. CONCLUSION: It was this paper's intention to contribute with an evidence analysis of recent studies approaching neuroprotective effects of flavonols and the potential to conduct human clinical studies.


Assuntos
Modelos Animais de Doenças , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Humanos
5.
J. venom. anim. toxins incl. trop. dis ; 28: e20210067, 2022. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1365078

RESUMO

Background: Melittin has shown antiproliferative effects on tumor cells. Therefore, it comprises a valuable compound for studies on cancer treatment. To the best of our knowledge, no studies have reported melittin effects on bone metastasis. Herein, we propose an approach based on intrametastatic melittin injection to treat bone metastases in colorectal cancer. Methods: Following the characterization of melittin and antiproliferative tests in vitro, a single dose was injected through intrametastatic route into the mouse bone metastasis model. Following treatment, metastasis growth was evaluated. Results: A single dose of melittin was able to inhibit metastasis growth. Histological analysis showed necrosis and inflammatory processes in melittin-treated metastasis. Except by mild weight loss, no other systemic effects were observed. Conclusion: Our data suggest that melittin might be a promising agent for the future development of treatment strategies aiming to reduce the bone metastasis skeletal-related impact in colorectal cancer patients with bone metastasis.(AU)


Assuntos
Animais , Osso e Ossos , Técnicas In Vitro , Neoplasias Colorretais , Metástase Neoplásica
6.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484793

RESUMO

Abstract Background: Melittin has shown antiproliferative effects on tumor cells. Therefore, it comprises a valuable compound for studies on cancer treatment. To the best of our knowledge, no studies have reported melittin effects on bone metastasis. Herein, we propose an approach based on intrametastatic melittin injection to treat bone metastases in colorectal cancer. Methods: Following the characterization of melittin and antiproliferative tests in vitro, a single dose was injected through intrametastatic route into the mouse bone metastasis model. Following treatment, metastasis growth was evaluated. Results: A single dose of melittin was able to inhibit metastasis growth. Histological analysis showed necrosis and inflammatory processes in melittin-treated metastasis. Except by mild weight loss, no other systemic effects were observed. Conclusion: Our data suggest that melittin might be a promising agent for the future development of treatment strategies aiming to reduce the bone metastasis skeletal-related impact in colorectal cancer patients with bone metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA