Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Brain ; 147(5): 1887-1898, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38193360

RESUMO

RFC1 disease, caused by biallelic repeat expansion in RFC1, is clinically heterogeneous in terms of age of onset, disease progression and phenotype. We investigated the role of the repeat size in influencing clinical variables in RFC1 disease. We also assessed the presence and role of meiotic and somatic instability of the repeat. In this study, we identified 553 patients carrying biallelic RFC1 expansions and measured the repeat expansion size in 392 cases. Pearson's coefficient was calculated to assess the correlation between the repeat size and age at disease onset. A Cox model with robust cluster standard errors was adopted to describe the effect of repeat size on age at disease onset, on age at onset of each individual symptoms, and on disease progression. A quasi-Poisson regression model was used to analyse the relationship between phenotype and repeat size. We performed multivariate linear regression to assess the association of the repeat size with the degree of cerebellar atrophy. Meiotic stability was assessed by Southern blotting on first-degree relatives of 27 probands. Finally, somatic instability was investigated by optical genome mapping on cerebellar and frontal cortex and unaffected peripheral tissue from four post-mortem cases. A larger repeat size of both smaller and larger allele was associated with an earlier age at neurological onset [smaller allele hazard ratio (HR) = 2.06, P < 0.001; larger allele HR = 1.53, P < 0.001] and with a higher hazard of developing disabling symptoms, such as dysarthria or dysphagia (smaller allele HR = 3.40, P < 0.001; larger allele HR = 1.71, P = 0.002) or loss of independent walking (smaller allele HR = 2.78, P < 0.001; larger allele HR = 1.60; P < 0.001) earlier in disease course. Patients with more complex phenotypes carried larger expansions [smaller allele: complex neuropathy rate ratio (RR) = 1.30, P = 0.003; cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) RR = 1.34, P < 0.001; larger allele: complex neuropathy RR = 1.33, P = 0.008; CANVAS RR = 1.31, P = 0.009]. Furthermore, larger repeat expansions in the smaller allele were associated with more pronounced cerebellar vermis atrophy (lobules I-V ß = -1.06, P < 0.001; lobules VI-VII ß = -0.34, P = 0.005). The repeat did not show significant instability during vertical transmission and across different tissues and brain regions. RFC1 repeat size, particularly of the smaller allele, is one of the determinants of variability in RFC1 disease and represents a key prognostic factor to predict disease onset, phenotype and severity. Assessing the repeat size is warranted as part of the diagnostic test for RFC1 expansion.


Assuntos
Idade de Início , Proteína de Replicação C , Humanos , Masculino , Feminino , Proteína de Replicação C/genética , Adulto , Expansão das Repetições de DNA/genética , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Criança , Fenótipo , Índice de Gravidade de Doença , Pré-Escolar , Progressão da Doença
2.
J Med Genet ; 61(4): 332-339, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989569

RESUMO

INTRODUCTION: NPC1 mutations are responsible for Niemann-Pick disease type C (NPC), a rare autosomal recessive neurodegenerative disease. Patients harbouring heterozygous NPC1 mutations may rarely show parkinsonism or dementia. Here, we describe for the first time a large family with an apparently autosomal dominant late-onset Alzheimer's disease (AD) harbouring a novel heterozygous NPC1 mutation. METHODS: All the five living siblings belonging to the family were evaluated. We performed clinical evaluation, neuropsychological tests, assessment of cerebrospinal fluid markers of amyloid deposition, tau pathology and neurodegeneration (ATN), structural neuroimaging and brain amyloid-positron emission tomography. Oxysterol serum levels were also tested. A wide next-generation sequencing panel of genes associated with neurodegenerative diseases and a whole exome sequencing analysis were performed. RESULTS: We detected the novel heterozygous c.3034G>T (p.Gly1012Cys) mutation in NPC1, shared by all the siblings. No other point mutations or deletions in NPC1 or NPC2 were found. In four siblings, a diagnosis of late-onset AD was defined according to clinical characterisation and ATN biomarkers (A+, T+, N+) and serum oxysterol analysis showed increased 7-ketocholesterol and cholestane-3ß,5α,6ß-triol. DISCUSSION: We describe a novel NPC1 heterozygous mutation harboured by different members of a family with autosomal dominant late-onset amnesic AD without NPC-associated features. A missense mutation in homozygous state in the same aminoacidic position has been previously reported in a patient with NPC with severe phenotype. The alteration of serum oxysterols in our family corroborates the pathogenic role of our NPC1 mutation. Our work, illustrating clinical and biochemical disease hallmarks associated with NPC1 heterozygosity in patients affected by AD, provides relevant insights into the pathogenetic mechanisms underlying this possible novel association.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Niemann-Pick Tipo C , Oxisteróis , Humanos , Doença de Alzheimer/genética , Mutação , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/genética , Proteína C1 de Niemann-Pick/genética
3.
Neurogenetics ; 25(2): 51-67, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38334933

RESUMO

Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG46 is a rare, early-onset and autosomal recessive HSP, linked to biallelic GBA2 mutations. About thirty families have been described worldwide, with different phenotypes like complicated HSP, recessive cerebellar ataxia or Marinesco-Sjögren Syndrome. Herein, we report five SPG46 patients harbouring five novel GBA2 mutations, the largest series described in Italy so far. Probands were enrolled in five different centres and underwent neurological examination, clinical cognitive assessment, column imaging for scoliosis assessment, ophthalmologic examination, brain imaging, GBA2 activity in peripheral blood cells and genetic testing. Their phenotype was consistent with HSP, with notable features like upper gaze palsy and movement disorders. We review demographic, genetic, biochemical and clinical information from all documented cases in the existing literature, focusing on the global distribution of cases, the features of the syndrome, its variable presentation, new potential identifying features and the significance of measuring GBA2 enzyme activity.


Assuntos
Glucosilceramidase , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glucosilceramidase/genética , Itália , Mutação/genética , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/diagnóstico
4.
Hum Mol Genet ; 31(24): 4131-4142, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35861666

RESUMO

KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Nanismo , Deficiência Intelectual , Anormalidades Dentárias , Gravidez , Feminino , Humanos , Fácies , Anormalidades Dentárias/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Hibridização Genômica Comparativa , Proteínas Repressoras/genética , Fenótipo , Nanismo/genética , População Europeia
5.
Mov Disord ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847051

RESUMO

BACKGROUND: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and hereditary spastic paraplegia type 7 (SPG7) represent the most common genotypes of spastic ataxia (SPAX). To date, their magnetic resonance imaging (MRI) features have only been described qualitatively, and a pure neuroradiological differential diagnosis between these two conditions is difficult to achieve. OBJECTIVES: To test the performance of MRI measures to discriminate between ARSACS and SPG7 (as an index of common SPAX disease). METHODS: In this prospective multicenter study, 3D-T1-weighted images of 59 ARSACS (35.4 ± 10.3 years, M/F = 33/26) and 78 SPG7 (54.8 ± 10.3 years, M/F = 51/27) patients of the PROSPAX Consortium were analyzed, together with 30 controls (45.9 ± 16.9 years, M/F = 15/15). Different linear and surface measures were evaluated. A receiver operating characteristic analysis was performed, calculating area under the curve (AUC) and corresponding diagnostic accuracy parameters. RESULTS: The pons area proved to be the only metric increased exclusively in ARSACS patients (P = 0.02). Other different measures were reduced in ARSACS and SPG7 compared with controls (all with P ≤ 0.005). A cut-off value equal to 1.67 of the pons-to-superior vermis area ratio proved to have the highest AUC (0.98, diagnostic accuracy 93%, sensitivity 97%) in discriminating between ARSACS and SPG7. CONCLUSIONS: Evaluation of the pons-to-superior vermis area ratio can discriminate ARSACS from other SPAX patients, as exemplified here by SPG7. Hence, we hereby propose this ratio as the Magnetic Resonance Index for the Assessment and Recognition of patients harboring SACS mutations (MRI-ARSACS), a novel diagnostic tool able to identify ARSACS patients and useful for discriminating ARSACS from other SPAX patients undergoing MRI. © 2024 International Parkinson and Movement Disorder Society.

6.
Cerebellum ; 23(2): 757-774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37155088

RESUMO

The association of cerebellar ataxia and hypogonadism occurs in a heterogeneous group of disorders, caused by different genetic mutations often associated with a recessive inheritance. In these patients, magnetic resonance imaging (MRI) plays a pivotal role in the diagnostic workflow, with a variable involvement of the cerebellar cortex, alone or in combination with other brain structures. Neuroimaging involvement of the pituitary gland is also variable. Here, we provide an overview of the main clinical and conventional brain and pituitary gland MRI imaging findings of the most common genetic mutations associated with the clinical phenotype of ataxia and hypogonadism, with the aim of helping neuroradiologists in the identification of these disorders.


Assuntos
Ataxia Cerebelar , Hipogonadismo , Humanos , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/genética , Ataxia Cerebelar/complicações , Hipogonadismo/diagnóstico por imagem , Hipogonadismo/genética , Encéfalo/diagnóstico por imagem , Hipófise/diagnóstico por imagem , Imageamento por Ressonância Magnética
7.
Cerebellum ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436911

RESUMO

The complexity in diagnosing hereditary degenerative ataxias lies not only in their rarity, but also in the variety of different genetic conditions that can determine sometimes similar and overlapping clinical findings. In this light, Magnetic Resonance Imaging (MRI) plays a key role in the evaluation of these conditions, being a fundamental diagnostic tool needed not only to exclude other causes determining the observed clinical phenotype, but also to proper guide to an adequate genetic testing. Here, we propose an MRI-based diagnostic algorithm named CHARON (Characterization of Hereditary Ataxias Relying On Neuroimaging), to help in disentangling among the numerous, and apparently very similar, hereditary degenerative ataxias. Being conceived from a neuroradiological standpoint, it is based primarily on an accurate evaluation of the observed MRI findings, with the first and most important being the pattern of cerebellar atrophy. Along with the evaluation of the presence, or absence, of additional signal changes and/or supratentorial involvement, CHARON allows for the identification of a small groups of ataxias sharing similar imaging features. The integration of additional MRI findings, demographic, clinical and laboratory data allow then for the identification of typical, and in some cases pathognomonic, phenotypes of hereditary ataxias.

8.
Brain ; 146(3): 1103-1120, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029068

RESUMO

SPG15 is a hereditary spastic paraplegia subtype caused by mutations in Spastizin, a protein encoded by the ZFYVE26 gene. Spastizin is involved in autophagosome maturation and autophagic lysosome reformation and SPG15-related mutations lead to autophagic lysosome reformation defects with lysosome enlargement, free lysosome depletion and autophagosome accumulation. Symptomatic and rehabilitative treatments are the only therapy currently available for patients. Here, we targeted autophagy and lysosomes in SPG15 patient-derived cells by using a library of autophagy-modulating compounds. We identified a rose of compounds affecting intracellular calcium levels, the calcium-calpain pathway or lysosomal functions, which reduced autophagosome accumulation. The six most effective compounds were tested in vivo in a new SPG15 loss of function Drosophila model that mimicked the reported SPG15 phenotype, with autophagosome accumulation, enlarged lysosomes, reduced free lysosomes, autophagic lysosome reformation defects and locomotor deficit. These compounds, namely verapamil, Bay K8644, 2',5'-dideoxyadenosine, trehalose, Small-Molecule Enhancer of Rapamycin 28 and trifluoperazine, improved lysosome biogenesis and function in vivo, demonstrating that lysosomes are a key pharmacological target to rescue SPG15 phenotype. Among the others, the Small-Molecule Enhancer of Rapamycin 28 was the most effective, rescuing both autophagic lysosome reformation defects and locomotor deficit, and could be considered as a potential therapeutic compound for this hereditary spastic paraplegia subtype.


Assuntos
Proteínas de Transporte , Paraplegia Espástica Hereditária , Humanos , Proteínas de Transporte/genética , Paraplegia Espástica Hereditária/genética , Cálcio/metabolismo , Autofagia/genética , Lisossomos/metabolismo
9.
Neurol Sci ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427163

RESUMO

INTRODUCTION: Hereditary spastic paraparesis (HSP) is a group of central nervous system diseases primarily affecting the spinal upper motor neurons, with different inheritance patterns and phenotypes. SPG18 is a rare, early-onset, complicated HSP, first reported as linked to biallelic ERLIN2 mutations. Recent cases of late-onset, pure HSP with monoallelic ERLIN2 variants prompt inquiries into the zygosity of such genetic conditions. The observed relationship between phenotype and mode of inheritance suggests a potential dominant negative effect of mutated ERLIN2 protein, potentially resulting in a milder phenotype. This speculation suggests that a wider range of HSP genes could be linked to various inheritance patterns. PURPOSE AND BACKGROUND: With documented cases of HSP loci exhibiting both dominant and recessive patterns, this study emphasizes that the concept of zygosity is no longer a limiting factor in the establishment of molecular diagnoses for HSP. Recent cases have demonstrated phenoconversion in SPG18, from HSP to an amyotrophic lateral sclerosis (ALS)-like syndrome. METHODS AND RESULTS: This report highlights two cases out of five exhibiting HSP-ALS phenoconversion, discussing an observed prevalence in autosomal dominant SPG18. Additionally, the study emphasizes the relatively high incidence of the c.502G>A variant in monoallelic SPG18 cases. This mutation appears to be particularly common in cases of HSPALS phenoconversion, indicating its potential role as a hotspot for a distinctive SPG18 phenotype with an ALS-like syndrome. CONCLUSIONS: Clinicians need to be aware that patients with HSP may show ALS signs and symptoms. On the other hand, HSP panels must be included in genetic testing methods for instances of familial ALS.

10.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473862

RESUMO

Hereditary spastic paraplegias (HSPs) comprise a family of degenerative diseases mostly hitting descending axons of corticospinal neurons. Depending on the gene and mutation involved, the disease could present as a pure form with limb spasticity, or a complex form associated with cerebellar and/or cortical signs such as ataxia, dysarthria, epilepsy, and intellectual disability. The progressive nature of HSPs invariably leads patients to require walking canes or wheelchairs over time. Despite several attempts to ameliorate the life quality of patients that have been tested, current therapeutical approaches are just symptomatic, as no cure is available. Progress in research in the last two decades has identified a vast number of genes involved in HSP etiology, using cellular and animal models generated on purpose. Although unanimously considered invaluable tools for basic research, those systems are rarely predictive for the establishment of a therapeutic approach. The advent of induced pluripotent stem (iPS) cells allowed instead the direct study of morphological and molecular properties of the patient's affected neurons generated upon in vitro differentiation. In this review, we revisited all the present literature recently published regarding the use of iPS cells to differentiate HSP patient-specific neurons. Most studies have defined patient-derived neurons as a reliable model to faithfully mimic HSP in vitro, discovering original findings through immunological and -omics approaches, and providing a platform to screen novel or repurposed drugs. Thereby, one of the biggest hopes of current HSP research regards the use of patient-derived iPS cells to expand basic knowledge on the disease, while simultaneously establishing new therapeutic treatments for both generalized and personalized approaches in daily medical practice.


Assuntos
Ataxia Cerebelar , Células-Tronco Pluripotentes , Paraplegia Espástica Hereditária , Animais , Humanos , Paraplegia Espástica Hereditária/genética , Neurônios , Axônios , Mutação
11.
Artigo em Inglês | MEDLINE | ID: mdl-38459409

RESUMO

Since 2008, FOXG1 haploinsufficiency has been linked to a severe neurodevelopmental phenotype resembling Rett syndrome but with earlier onset. Most patients are unable to sit, walk, or speak. For years, FOXG1 sequencing was only prescribed in such severe cases, limiting insight into the full clinical spectrum associated with this gene. Next-generation sequencing (NGS) now enables unbiased diagnostics. Through the European Reference Network for Rare Malformation Syndromes, Intellectual and Other Neurodevelopmental Disorders, we gathered data from patients with heterozygous FOXG1 variants presenting a mild phenotype, defined as able to speak and walk independently. We also reviewed data from three previously reported patients meeting our criteria. We identified five new patients with pathogenic FOXG1 missense variants, primarily in the forkhead domain, showing varying nonspecific intellectual disability and developmental delay. These features are not typical of congenital Rett syndrome and were rarely associated with microcephaly and epilepsy. Our findings are consistent with a previous genotype-phenotype analysis by Mitter et al. suggesting the delineation of five different FOXG1 genotype groups. Milder phenotypes were associated with missense variants in the forkhead domain. This information may facilitate prognostic assessments in children carrying a FOXG1 variant and improve the interpretation of new variants identified with genomic sequencing.

12.
Neuropediatrics ; 54(6): 407-411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37549685

RESUMO

Childhood apraxia of speech (CAS) is a pediatric motor speech disorder. The genetic etiology of this complex neurological condition is not yet well understood, although some genes have been linked to it. We describe the case of a boy with a severe and persistent motor speech disorder, consistent with CAS, and a coexisting language impairment.Whole exome sequencing in our case revealed a de novo and splicing mutation in the CSMD1 gene.


Assuntos
Apraxias , Fala , Masculino , Criança , Humanos , Apraxias/genética , Distúrbios da Fala/genética , Mutação/genética , Sequenciamento do Exoma , Proteínas de Membrana/genética , Proteínas Supressoras de Tumor/genética
13.
Neuropediatrics ; 54(3): 211-216, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36693417

RESUMO

INTRODUCTION: Pyruvate dehydrogenase complex (PDH) deficiency (Online Mendelian Inheritance in Man # 312170) is a relatively common mitochondrial disorder, caused by mutations in the X-linked PDHA1 gene and presenting with a variable phenotypic spectrum, ranging from severe infantile encephalopathy to milder chronic neurological disorders.Isolated peripheral neuropathy as predominant clinical presentation is uncommon. RESULTS: We report on a patient, now 21 years old, presenting at the age of 2 years with recurrent symmetric weakness as first symptom of a PDH deficiency. Neurophysiological evaluation proving a sensory-motor polyneuropathy with conduction blocks and presence of elevated cerebrospinal fluid proteins, suggested a chronic inflammatory demyelinating polyneuropathy. The evidence of high serum lactate and the alterations in oxidative metabolism in muscle biopsy pointed toward the final diagnosis. After starting nutritional supplements, no further episodes occurred. A hemizygous mutation in PDHA1 (p.Arg88Cys) was identified. This mutation has been previously described in five patients with a similar phenotype. A three-dimensional reconstruction demonstrated that mutations affecting this arginine destabilize the interactions between the subunits of the E1 complex. CONCLUSION: We summarize the clinical and genetic characteristics of one patient with PDH deficiency presenting isolated peripheral nervous system involvement. This study highlights that the diagnosis of PDH deficiency should be considered in children with unexplained peripheral neuropathy, even with features suggestive of acquired forms, especially in case of early onset and limited response to treatment. A simple analysis of lactic acid could help to target the diagnosis.In addition, we suggest that the residue Arg88 is the most frequently involved in this specific phenotype of PDH deficiency.


Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Humanos , Ácido Láctico/líquido cefalorraquidiano , Ácido Láctico/uso terapêutico , Mutação , Fenótipo , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/diagnóstico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/tratamento farmacológico , Doença da Deficiência do Complexo de Piruvato Desidrogenase/genética
14.
Neurol Sci ; 44(4): 1415-1418, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36648562

RESUMO

INTRODUCTION: NAGLU encodes N-acetyl-alpha-glucosaminidase, an enzyme that degrades heparan sulfate. Biallelic NAGLU mutations cause mucopolysaccharidosis IIIB, a severe childhood-onset neurodegenerative disease, while monoallelic mutations are associated to late-onset, dominantly inherited painful sensory neuropathy. However, to date, only one family with a dominant NAGLU-related neuropathy has been described. CASE REPORT: Here we describe a patient with early-onset motor polyneuropathy harboring a novel monoallelic NAGLU mutation. We found reduced NAGLU enzymatic activity thus corroborating the pathogenic role of the new variant. DISCUSSION: Our report represents the second ever described case with dominant NAGLU-related neuropathy and the first case with early-onset motor symptoms. We underlie the importance of a thorough clinical description of this probably underestimated new clinical entity.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Mucopolissacaridose III , Doenças Neurodegenerativas , Doenças do Sistema Nervoso Periférico , Polineuropatias , Humanos , Criança , Mucopolissacaridose III/diagnóstico , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Polineuropatias/genética , Mutação/genética
15.
Eur Neurol ; 86(3): 185-192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36809754

RESUMO

INTRODUCTION: Mutations in the neurofilament polypeptide light chain (NEFL) gene account for <1% of all forms of Charcot-Marie-Tooth (CMT) diseases and present with different phenotypes, including demyelinating, axonal and intermediate neuropathies, and with diverse pattern of transmission, with dominant and recessive inheritance being described. METHODS: Here, we present clinical and molecular data in two new unrelated Italian families, affected with CMT. RESULTS: We studied fifteen subjects (11 women, 4 men), age range 23-62 year. Onset of symptoms was mainly in childhood, with running/walking difficulties; some patients were pauci-asymptomatic; almost all shared variably distributed features of absent/reduced deep tendon reflexes, impaired gait, reduced sensation, and distal weakness in the legs. Skeletal deformities were seldom documented and were of mild degree. Additional features included sensorineural hearing loss in 3 patients, underactive bladder in 2 patients, and cardiac conduction abnormalities, requiring pacemaker implantation, in one child. Central nervous system (CNS) impairment was not documented in any subject. Neurophysiological investigation disclosed feature suggestive of demyelinating sensory-motor polyneuropathy in one family and resembling an intermediate form in the other. Multigene panel analysis of all known CMT genes revealed two heterozygous variants in NEFL: p.E488K and p.P440L. While the latter change segregated with the phenotype, the p.E488K variant appeared to act as a modifier factor being associated with axonal nerve damage. CONCLUSIONS: CMT related to P440L mutation in NEFL is associated with a mild, childhood-onset phenotype, showing prevalently sensory distal limbs involving and with motor impairment predominantly involving anterolateral leg muscles, in the absence of CNS involvement. Additional findings, never reported so far in patients with NEFL mutation, are cardiological and urinary dysfunctions. Our study expands the array of clinical features associated with NEFL-related CMT.


Assuntos
Doença de Charcot-Marie-Tooth , Doenças Dentárias , Feminino , Humanos , Doença de Charcot-Marie-Tooth/genética , Músculo Esquelético , Mutação/genética , Fenótipo , Masculino , Adulto Jovem , Adulto , Pessoa de Meia-Idade
16.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569761

RESUMO

Mutations in the tubulin-specific chaperon D (TBCD) gene, involved in the assembly and disassembly of the α/ß-tubulin heterodimers, have been reported in early-onset progressive neurodevelopment regression, with epilepsy and mental retardation. We describe a rare homozygous variant in TBCD, namely c.881G>A/p.Arg294Gln, in a young woman with a phenotype dominated by distal motorneuronopathy and mild mental retardation, with neuroimaging evidence of corpus callosum hypoplasia. The peculiar phenotype is discussed in light of the molecular interpretation, enriching the literature data on tubulinopathies generated from TBCD mutations.


Assuntos
Epilepsia , Deficiência Intelectual , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/metabolismo , Deficiência Intelectual/genética , Tubulina (Proteína)/metabolismo
17.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068960

RESUMO

Genetic defects in the nuclear encoded subunits and assembly factors of cytochrome c oxidase (mitochondrial complex IV) are very rare and are associated with a wide variety of phenotypes. Biallelic pathogenic variants in the COX11 protein were previously identified in two unrelated children with infantile-onset mitochondrial encephalopathies. Through comprehensive clinical, genetic and functional analyses, here we report on a new patient harboring novel heterozygous variants in COX11, presenting with Leigh-like features, and provide additional experimental evidence for a direct correlation between COX11 protein expression and sensitivity to oxidative stress. To sort out the contribution of the single mutations to the phenotype, we employed a multi-faceted approach using Saccharomyces cerevisiae as a genetically manipulable system, and in silico structure-based analysis of human COX11. Our results reveal differential effects of the two novel COX11 mutations on yeast growth, respiration, and cellular redox status, as well as their potential impact on human protein stability and function. Strikingly, the functional deficits observed in patient fibroblasts are recapitulated in yeast models, validating the conservation of COX11's role in mitochondrial integrity across evolutionarily distant organisms. This study not only expands the mutational landscape of COX11-associated mitochondrial disorders but also underscores the continued translational relevance of yeast models in dissecting complex molecular pathways.


Assuntos
Doenças Mitocondriais , Proteínas de Saccharomyces cerevisiae , Criança , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Membrana/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Doenças Mitocondriais/genética , Fibroblastos/metabolismo , Proteínas de Transporte de Cobre/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo
18.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240454

RESUMO

Cardiomyopathies are mostly determined by genetic mutations affecting either cardiac muscle cell structure or function. Nevertheless, cardiomyopathies may also be part of complex clinical phenotypes in the spectrum of neuromuscular (NMD) or mitochondrial diseases (MD). The aim of this study is to describe the clinical, molecular, and histological characteristics of a consecutive cohort of patients with cardiomyopathy associated with NMDs or MDs referred to a tertiary cardiomyopathy clinic. Consecutive patients with a definitive diagnosis of NMDs and MDs presenting with a cardiomyopathy phenotype were described. Seven patients were identified: two patients with ACAD9 deficiency (Patient 1 carried the c.1240C>T (p.Arg414Cys) homozygous variant in ACAD9; Patient 2 carried the c.1240C>T (p.Arg414Cys) and the c.1646G>A (p.Ar549Gln) variants in ACAD9); two patients with MYH7-related myopathy (Patient 3 carried the c.1325G>A (p.Arg442His) variant in MYH7; Patient 4 carried the c.1357C>T (p.Arg453Cys) variant in MYH7); one patient with desminopathy (Patient 5 carried the c.46C>T (p.Arg16Cys) variant in DES); two patients with mitochondrial myopathy (Patient 6 carried the m.3243A>G variant in MT-TL1; Patient 7 carried the c.253G>A (p.Gly85Arg) and the c.1055C>T (p.Thr352Met) variants in MTO1). All patients underwent a comprehensive cardiovascular and neuromuscular evaluation, including muscle biopsy and genetic testing. This study described the clinical phenotype of rare NMDs and MDs presenting as cardiomyopathies. A multidisciplinary evaluation, combined with genetic testing, plays a main role in the diagnosis of these rare diseases, and provides information about clinical expectations, and guides management.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Doenças Mitocondriais , Doenças Musculares , Humanos , Cardiomiopatias/genética , Cardiomiopatias/diagnóstico , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Mutação , Fenótipo
19.
Eur Radiol ; 32(12): 8058-8064, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35593959

RESUMO

OBJECTIVES: Hereditary spastic paraplegia (HSP) is a group of genetic neurodegenerative diseases characterised by upper motor neuron (UMN) impairment of the lower limbs. The differential diagnosis with primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis (ALS) can be challenging. As microglial iron accumulation was reported in the primary motor cortex (PMC) of ALS cases, here we assessed the radiological appearance of the PMC in a cohort of HSP patients using iron-sensitive MR imaging and compared the PMC findings among HSP, PLS, and ALS patients. METHODS: We included 3-T MRI scans of 23 HSP patients, 7 PLS patients with lower limb onset, 8 ALS patients with lower limb and prevalent UMN onset (UMN-ALS), and 84 ALS patients with any other clinical picture. The PMC was visually rated on 3D T2*-weighted images as having normal signal intensity, mild hypointensity, or marked hypointensity, and differences in the frequency distribution of signal intensity among the diseases were investigated. RESULTS: The marked hypointensity in the PMC was visible in 3/22 HSP patients (14%), 7/7 PLS patients (100%), 6/8 UMN-ALS patients (75%), and 35/84 ALS patients (42%). The frequency distribution of normal signal intensity, mild hypointensity, and marked hypointensity in HSP patients was different than that in PLS, UMN-ALS, and ALS patients (p < 0.01 in all cases). CONCLUSIONS: Iron-sensitive imaging of the PMC could provide useful information in the diagnostic work - up of adult patients with a lower limb onset UMN syndrome, as the cortical hypointensity often seen in PLS and ALS cases is apparently rare in HSP patients. KEY POINTS: • The T2* signal intensity of the primary motor cortex was investigated in patients with HSP, PLS with lower limb onset, and ALS with lower limb and prevalent UMN onset (UMN-ALS) using a clinical 3-T MRI sequence. • Most HSP patients had normal signal intensity in the primary motor cortex (86%); on the contrary, all the PLS and the majority of UMN-ALS patients (75%) had marked cortical hypointensity. • The T2*-weighted imaging of the primary motor cortex could provide useful information in the differential diagnosis of sporadic adult-onset UMN syndromes.


Assuntos
Esclerose Lateral Amiotrófica , Córtex Motor , Doença dos Neurônios Motores , Paraplegia Espástica Hereditária , Adulto , Humanos , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Paraplegia Espástica Hereditária/diagnóstico por imagem , Córtex Motor/diagnóstico por imagem , Ferro , Doença dos Neurônios Motores/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
20.
Neuropediatrics ; 53(3): 208-212, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34852375

RESUMO

Variants in SURF1, encoding an assembly factor of mitochondrial respiratory chain complex IV, cause Leigh syndrome (LS) and Charcot-Marie-Tooth type 4K in children and young adolescents. Magnetic resonance imaging (MRI) appearance of enlarged nerve roots with postcontrastographic enhancement is a distinctive feature of hypertrophic neuropathy caused by onion-bulb formation and it has rarely been described in mitochondrial diseases (MDs). Spinal nerve roots abnormalities on MRI are novel findings in LS associated with variants in SURF1. Here we report detailed neuroradiological and neurophysiologic findings in a child with LS and demyelinating neuropathy SURF1-related. Our case underlines the potential contributive role of spinal neuroimaging together with neurophysiological examination to identify the full spectrum of patterns in MDs. It remains to elucidate if these observations remain peculiar of SURF1 variants or potentially detectable in other MDs with peripheral nervous system involvement.


Assuntos
Doença de Charcot-Marie-Tooth , Doença de Leigh , Adolescente , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/genética , Criança , Humanos , Doença de Leigh/diagnóstico por imagem , Imageamento por Ressonância Magnética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mutação , Raízes Nervosas Espinhais/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA