Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Gut ; 69(7): 1218-1228, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32066625

RESUMO

OBJECTIVE: Ageing is accompanied by deterioration of multiple bodily functions and inflammation, which collectively contribute to frailty. We and others have shown that frailty co-varies with alterations in the gut microbiota in a manner accelerated by consumption of a restricted diversity diet. The Mediterranean diet (MedDiet) is associated with health. In the NU-AGE project, we investigated if a 1-year MedDiet intervention could alter the gut microbiota and reduce frailty. DESIGN: We profiled the gut microbiota in 612 non-frail or pre-frail subjects across five European countries (UK, France, Netherlands, Italy and Poland) before and after the administration of a 12-month long MedDiet intervention tailored to elderly subjects (NU-AGE diet). RESULTS: Adherence to the diet was associated with specific microbiome alterations. Taxa enriched by adherence to the diet were positively associated with several markers of lower frailty and improved cognitive function, and negatively associated with inflammatory markers including C-reactive protein and interleukin-17. Analysis of the inferred microbial metabolite profiles indicated that the diet-modulated microbiome change was associated with an increase in short/branch chained fatty acid production and lower production of secondary bile acids, p-cresols, ethanol and carbon dioxide. Microbiome ecosystem network analysis showed that the bacterial taxa that responded positively to the MedDiet intervention occupy keystone interaction positions, whereas frailty-associated taxa are peripheral in the networks. CONCLUSION: Collectively, our findings support the feasibility of improving the habitual diet to modulate the gut microbiota which in turn has the potential to promote healthier ageing.


Assuntos
Dieta Mediterrânea , Fragilidade/prevenção & controle , Microbioma Gastrointestinal , Idoso , Europa (Continente) , Feminino , Fragilidade/dietoterapia , Microbioma Gastrointestinal/genética , Nível de Saúde , Humanos , Masculino , Cooperação do Paciente , RNA Ribossômico 16S/genética , Método Simples-Cego
2.
FASEB J ; 33(4): 5168-5180, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30620616

RESUMO

The Sarcolab pilot study of 2 crewmembers, investigated before and after a 6-mo International Space Station mission, has demonstrated the substantial muscle wasting and weakness, along with disruption of muscle's oxidative metabolism. The present work aimed at evaluating the pro/anti-inflammatory status in the same 2 crewmembers (A, B). Blood circulating (c-)microRNAs (miRs), c-proteasome, c-mitochondrial DNA, and cytokines were assessed by real-time quantitative PCR or ELISA tests. Time series analysis was performed ( i.e., before flight and after landing) at 1 and 15 d of recovery (R+1 and R+15, respectively). C-biomarkers were compared with an age-matched control population and with 2-dimensional proteomic analysis of the 2 crewmembers' muscle biopsies. Striking differences were observed between the 2 crewmembers at R+1, in terms of inflamma-miRs (c-miRs-21-5p, -126-3p, and -146a-5p), muscle specific (myo)-miR-206, c-proteasome, and IL-6/leptin, thus making the 2 astronauts dissimilar to each other. Final recovery levels of c-proteasome, c-inflamma-miRs, and c-myo-miR-206 were not reverted to the baseline values in crewmember A. In both crewmembers, myo-miR-206 changed significantly after recovery. Muscle biopsy of astronaut A showed an impressive 80% increase of α-1-antitrypsin, a target of miR-126-3p. These results point to a strong stress response induced by spaceflight involving muscle tissue and the proinflammatory setting, where inflamma-miRs and myo-miR-206 mediate the systemic recovery phase after landing.-Capri, M., Morsiani, C., Santoro, A., Moriggi, M., Conte, M., Martucci, M., Bellavista, E., Fabbri, C., Giampieri, E., Albracht, K., Flück, M., Ruoss, S., Brocca, L., Canepari, M., Longa, E., Di Giulio, I., Bottinelli, R., Cerretelli, P., Salvioli, S., Gelfi, C., Franceschi, C., Narici, M., Rittweger, J. Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting.


Assuntos
Inflamação/metabolismo , Proteínas Musculares/metabolismo , Voo Espacial , Astronautas , Biomarcadores/metabolismo , Citocinas/metabolismo , DNA Mitocondrial/metabolismo , Humanos , Inflamação/imunologia , Leptina/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Projetos Piloto , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica
3.
Annu Rev Nutr ; 38: 329-356, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29852087

RESUMO

Individuals capable of reaching the extreme limit of human life such as centenarians are characterized by an exceptionally healthy phenotype-that is, a low number of diseases, low blood pressure, optimal metabolic and endocrine parameters, and increased diversity in the gut microbiota-and they are epigenetically younger than their chronological age. We present data suggesting that such a remarkable phenotype is largely similar to that found in adults following a calorie-restricted diet. Interviews with centenarians and historical data on the nutritional and lifestyle habits of Italians during the twentieth century suggest that as children and into adulthood, centenarians lived in an environment that was nonobesogenic, but at the same time the environment did not produce malnutrition. Centenarians appear to be creatures of habit, and we argue that their habit of eating meals at the same time each day favored the maintenance of circadian rhythms, including their sleep cycle. Finally, we argue that centenarians' chronic inflammatory status, which we dubbed inflammaging, is peculiar, likely adaptive, and less detrimental than in younger people.


Assuntos
Dieta , Inflamação/metabolismo , Estado Nutricional , Idoso de 80 Anos ou mais , Microbioma Gastrointestinal , Humanos , Masculino
4.
Eur Radiol ; 29(9): 4968-4979, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30715588

RESUMO

OBJECTIVES: The aim of this work was to examine the cross-sectional relationship between body composition (BC) markers for adipose and lean tissue and bone mass, and a wide range of specific inflammatory and adipose-related markers in healthy elderly Europeans. METHODS: A whole-body dual-energy X-ray absorptiometry (DXA) scan was made in 1121 healthy (65-79 years) women and men from five European countries of the "New dietary strategies addressing the specific needs of elderly population for a healthy aging in Europe" project (NCT01754012) cohort to measure markers of adipose and lean tissue and bone mass. Pro-inflammatory (IL-6, IL-6Rα, TNF-α, TNF-R1, TNF-R2, pentraxin 3, CRP, alpha-1-acid glycoprotein, albumin) and anti-inflammatory (IL-10, TGF-ß1) molecules as well as adipose-related markers such as leptin, adiponectin, ghrelin, and resistin were measured by magnetic bead-based multiplex-specific immunoassays and biochemical assays. RESULTS: BC characteristics were different in elderly women and men, and more favorable BC markers were associated with a better adipose-related inflammatory profile, with the exception of skeletal muscle mass index. No correlation was found with the body composition markers and circulating levels of some standard pro- and anti-inflammatory markers like IL-6, pentraxin 3, IL-10, TGF-ß1, TNF-α, IL-6Rα, glycoprotein 130, TNF-α-R1, and TNF-α-R2. CONCLUSIONS: The association between BC and inflammatory and adipose-related biomarkers is crucial in decoding aging and pathophysiological processes, such as sarcopenia. DXA can help in understanding how the measurement of fat and muscle is important, making the way from research to clinical practice. KEY POINTS: • Body composition markers concordantly associated positively or negatively with adipose-related and inflammatory markers, with the exception of skeletal muscle mass index. • No correlation was found with the body composition markers and circulating levels of some standard pro- and anti-inflammatory markers like IL-6, pentraxin 3, IL-10, TGF-ß1, TNF-α, IL-6Rα, gp130, TNF-α-R1, and TNF-α-R2. • Skeletal muscle mass index (SMI) shows a good correlation with inflammatory profile in age-related sarcopenia.


Assuntos
Adiposidade , Composição Corporal , Densidade Óssea , Mediadores da Inflamação/sangue , Inflamação/fisiopatologia , Absorciometria de Fóton , Idoso , Biomarcadores/sangue , Estudos Transversais , Europa (Continente) , Feminino , Humanos , Masculino , Músculo Esquelético/diagnóstico por imagem , Obesidade/fisiopatologia , Sarcopenia/fisiopatologia , Fatores Sexuais
5.
Cell Mol Life Sci ; 75(1): 129-148, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29032502

RESUMO

The gut microbiota (GM) is a complex, evolutionarily molded ecological system, which contributes to a variety of physiological functions. The GM is highly dynamic, being sensitive to environmental stimuli, and its composition changes over the host's entire lifespan. However, the basic question of how much these changes may be ascribed to variables such as population, diet, genetics and gender, and/or to the aging process per se is still largely unanswered. We argue that comparison among studies on centenarians-the best model of healthy aging and longevity-recruited from different geographical areas/populations (different genetics and dietary habits) can help to disentangle the contribution of aging and non-aging-related variables to GM remodeling with age. The current review focuses on the role of population, gender and host genetics as possible drivers of GM modification along the human aging process. The feedback impact of age-associated GM variation on the GM-brain axis and GM metabolomics is also discussed. We likewise address the role of GM in neurodegenerative diseases such as Parkinson's and Alzheimer's, and its possible therapeutic use, taking advantage of the fact that centenarians are characterized by an extreme (healthy) phenotype versus patients suffering from age-related pathologies. Finally, it is argued that longitudinal studies combining metagenomics sequencing and in-depth phylogenetic analysis with a comprehensive phenotypic characterization of centenarians and patients using up-to-date omics (metabolomics, transcriptomics and meta-transcriptomics) are urgently needed.


Assuntos
Envelhecimento/fisiologia , Dieta , Microbioma Gastrointestinal/fisiologia , Longevidade/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Feminino , Genética Populacional , Humanos , Longevidade/genética , Masculino
6.
Int J Mol Sci ; 20(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022953

RESUMO

Aging is characterized by an extensive remodeling of epigenetic patterns, which has been implicated in the physiopathology of age-related diseases. Nutrition plays a significant role in modulating the epigenome, and a growing amount of data indicate that dietary changes can modify the epigenetic marks associated with aging. In this review, we will assess the current advances in the relationship between caloric restriction, a proven anti-aging intervention, and epigenetic signatures of aging. We will specifically discuss the impact of caloric restriction on epigenetic regulation and how some of the favorable effects of caloric restriction on lifespan and healthspan could be mediated by epigenetic modifications.


Assuntos
Envelhecimento , Restrição Calórica , Epigênese Genética , Animais , Metilação de DNA , Código das Histonas , Humanos , MicroRNAs/genética
7.
Breast Cancer Res ; 20(1): 29, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29665866

RESUMO

BACKGROUND: Leukocyte telomere length (LTL) and mitochondrial genome (mtDNA) copy number and deletions have been proposed as risk markers for various cancer types, including breast cancer (BC). METHODS: To gain a more comprehensive picture on how these markers can modulate BC risk, alone or in conjunction, we performed simultaneous measurements of LTL and mtDNA copy number in up to 570 BC cases and 538 controls from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. As a first step, we measured LTL and mtDNA copy number in 96 individuals for which a blood sample had been collected twice with an interval of 15 years. RESULTS: According to the intraclass correlation (ICC), we found very good stability over the time period for both measurements, with ICCs of 0.63 for LTL and 0.60 for mtDNA copy number. In the analysis of the entire study sample, we observed that longer LTL was strongly associated with increased risk of BC (OR 2.71, 95% CI 1.58-4.65, p = 3.07 × 10- 4 for highest vs. lowest quartile; OR 3.20, 95% CI 1.57-6.55, p = 1.41 × 10- 3 as a continuous variable). We did not find any association between mtDNA copy number and BC risk; however, when considering only the functional copies, we observed an increased risk of developing estrogen receptor-positive BC (OR 2.47, 95% CI 1.05-5.80, p = 0.04 for highest vs. lowest quartile). CONCLUSIONS: We observed a very good correlation between the markers over a period of 15 years. We confirm a role of LTL in BC carcinogenesis and suggest an effect of mtDNA copy number on BC risk.


Assuntos
Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , DNA Mitocondrial/genética , Homeostase do Telômero/genética , Adulto , Idoso , Neoplasias da Mama/patologia , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Europa (Continente)/epidemiologia , Feminino , Humanos , Leucócitos/patologia , Pessoa de Meia-Idade , Avaliação Nutricional , Estudos Prospectivos , Fatores de Risco , Telômero/genética
8.
J Neurosci Res ; 96(10): 1641-1662, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30098077

RESUMO

Age-related changes in the brain reflect a dynamic interaction of genetic, epigenetic, phenotypic, and environmental factors that can be temporally restricted or more longitudinally present throughout the lifespan. Fundamental to these mechanisms is the capacity for physiological adaptation through modulation of diverse molecular and biochemical signaling occurring from the intracellular to the network-systemic level throughout the brain. A number of agents that affect the onset and progression of Parkinson's disease (PD)-like effects in experimental models exhibit temporal features, and mechanisms of hormetic dose responses. These findings have particular significance since the hormetic dose response describes the amplitude and range of potential therapeutic effects, thereby affecting the design and conduct of studies of interventions against PD (and other neurodegenerative diseases), and may also be important to a broader consideration of hormetic processes in resilient adaptive responses that might afford protection against the onset and/or progression of PD and related disorders.


Assuntos
Doença de Parkinson/prevenção & controle , Doença de Parkinson/terapia , Adaptação Fisiológica , Fatores Etários , Animais , Modelos Animais de Doenças , Hormese , Humanos
9.
Biogerontology ; 16(3): 329-40, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25559404

RESUMO

Sarcopenia, the progressive loss of muscle mass and strength, is a phenomenon characterizing human aging whose etiology is still not clear. While there is increasing evidence for the influence of inter-muscular adipose tissue infiltration in the development of sarcopenia, much less is known about a possible role for intra-muscular triglycerides (IMTG). IMTG accumulate in form of lipid droplets decorated by proteins such as Perilipins (Plins). In skeletal muscle the most abundant are Plin2 and Plin5. In this study we compared the expression of these two Plins in Vastus lateralis muscle samples of subjects of different age, both healthy donors (HD) and patients with limited lower limb mobility (LLMI). These latter are characterized by a condition of chronic physical inactivity. Plin2 expression resulted higher in old age for both HD and LLMI patients, while Plin5 slightly decreased only in LLMI patients. Moreover, in these patients, only Plin2 was associated with the decrease of muscle strength and the expression of factors related to muscle atrophy (MuRF1, Atrogin and p53). An increase in Plin2 and a concomitant decrease of Plin5 was also observed when we considered animal model of disuse-induced muscle atrophy. As a whole, these data indicate that Plin2 and Plin5 have a different expression pattern during muscle aging and inactivity, and only Plin2 appears to be associated with functional alterations of the muscle.


Assuntos
Envelhecimento/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas/metabolismo , Sarcopenia/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Animais , Biópsia , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pessoa de Meia-Idade , Limitação da Mobilidade , Modelos Animais , Denervação Muscular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Força Muscular/fisiologia , Músculo Esquelético/patologia , Atrofia Muscular/genética , Perilipina-2 , Perilipina-5 , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas/genética , Sarcopenia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Biogerontology ; 16(3): 353-64, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25631672

RESUMO

Leukocyte telomere length (LTL) has been observed to be hereditable and correlated with longevity. However, contrasting results have been reported in different populations on the value of LTL heritability and on how biology of telomeres influences longevity. We investigated whether the variability of genes correlated to telomere maintenance is associated with telomere length and affects longevity in a population from Southern Italy (20-106 years). For this purpose we analyzed thirty-one polymorphisms in eight telomerase-associated genes of which twelve in the genes coding for the core enzyme (TERT and TERC) and the remaining in genes coding for components of the telomerase complex (TERF1, TERF2, TERF2IP, TNKS, TNKS2 and TEP1). We did not observe (after correcting for multiple testing) statistically significant associations between SNPs and LTL, possibly suggesting a low genetic influence of the variability of these genes on LTL in the elderly. On the other hand, we found that the variability of genes encoding for TERF1 and TNKS2, not directly involved in LTL, but important for keeping the integrity of the structure, shows a significant association with longevity. This suggests that the maintenance of these chromosomal structures may be critically important for preventing, or delaying, senescence and aging. Such a correlation was not observed in a population from northern Italy that we used as an independent replication set. This discrepancy is in line with previous reports regarding both the population specificity of results on telomere biology and the differences of aging in northern and southern Italy.


Assuntos
Longevidade/genética , Grupos Populacionais/genética , Tanquirases/genética , Proteínas de Ligação a Telômeros/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/fisiologia , Feminino , Variação Genética/genética , Variação Genética/fisiologia , Humanos , Itália , Longevidade/fisiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético/genética , Polimorfismo Genético/fisiologia , Grupos Populacionais/etnologia , Complexo Shelterina , Tanquirases/fisiologia , Telômero/genética , Telômero/fisiologia , Homeostase do Telômero/genética , Proteínas de Ligação a Telômeros/fisiologia
11.
Ageing Res Rev ; 96: 102253, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447609

RESUMO

Aging is a complex multidimensional, progressive remodeling process affecting multiple organ systems. While many studies have focused on studying aging across multiple organs, assessment of the contribution of individual organs to overall aging processes is a cutting-edge issue. An organ's biological age might influence the aging of other organs, revealing a multiorgan aging network. Recent data demonstrated a similar yet asynchronous inter-organs and inter-individuals progression of aging, thereby providing a foundation to track sources of declining health in old age. The integration of multiple omics with common clinical parameters through artificial intelligence has allowed the building of organ-specific aging clocks, which can predict the development of specific age-related diseases at high resolution. The peculiar individual aging-trajectory, referred to as ageotype, might provide a novel tool for a personalized anti-aging, preventive medicine. Here, we review data relative to biological aging clocks and omics-based data, suggesting different organ-specific aging rates. Additional research on longitudinal data, including young subjects and analyzing sex-related differences, should be encouraged to apply ageotyping analysis for preventive purposes in clinical practice.


Assuntos
Envelhecimento , Inteligência Artificial , Humanos , Relógios Biológicos
12.
Aging Cell ; 23(5): e14111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38650174

RESUMO

Perilipin 2 (PLIN2) is a lipid droplet (LD)-coating protein playing important roles in lipid homeostasis and suppression of lipotoxicity in different tissues and cell types. Recently, a role for PLIN2 in supporting mitochondrial function has emerged. PLIN2 dysregulation is involved in many metabolic disorders and age-related diseases. However, the exact consequences of PLIN2 dysregulation are not yet completely understood. In this study, we knocked down (KD) PLIN2 in primary human dermal fibroblasts (hDFs) from young (mean age 29 years) and old (mean age 71 years) healthy donors. We have found that PLIN2 KD caused a decline of mitochondrial function only in hDFs from young donors, while mitochondria of hDFs from old donors (that are already partially impaired) did not significantly worsen upon PLIN2 KD. This mitochondrial impairment is associated with the increased expression of the stress-related mitokine growth differentiation factor 15 (GDF15) and the induction of cell senescence. Interestingly, the simultaneous KD of PLIN2 and GDF15 abrogated the induction of cell senescence, suggesting that the increase in GDF15 is the mediator of this phenomenon. Moreover, GDF15 KD caused a profound alteration of gene expression, as observed by RNA-Seq analysis. After a more stringent analysis, this alteration remained statistically significant only in hDFs from young subjects, further supporting the idea that cells from old and young donors react differently when undergoing manipulation of either PLIN2 or GDF15 genes, with the latter being likely a downstream mediator of the former.


Assuntos
Senescência Celular , Regulação para Baixo , Fibroblastos , Fator 15 de Diferenciação de Crescimento , Mitocôndrias , Perilipina-2 , Humanos , Senescência Celular/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Perilipina-2/metabolismo , Perilipina-2/genética , Adulto , Idoso , Envelhecimento/metabolismo , Envelhecimento/genética , Células Cultivadas , Masculino
13.
J Cachexia Sarcopenia Muscle ; 14(1): 116-125, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36346154

RESUMO

BACKGROUND: There are several mechanisms via which increased protein intake might maintain or improve bone mineral density (BMD), but current evidence for an association or effect is inconclusive. The objectives of this study were to investigate the association between dietary protein intake (total, plant and animal) with BMD (spine and total body) and the effects of protein supplementation on BMD. METHODS: Individual data from four trials that included either (pre-)frail, undernourished or healthy older adults (aged ≥65 years) were combined. Dietary intake was assessed with food records (2, 3 or 7 days) and BMD with dual-energy X-ray absorptiometry (DXA). Associations and effects were assessed by adjusted linear mixed models. RESULTS: A total of 1570 participants [57% women, median (inter-quartile range): age 71 (68-75) years] for which at least total protein intake and total body BMD were known were included in cross-sectional analyses. In fully adjusted models, total protein intake was associated with higher total body and spine BMD [beta (95% confidence interval): 0.0011 (0.0006-0.0015) and 0.0015 (0.0007-0.0023) g/cm2 , respectively]. Animal protein intake was associated with higher total body and spine BMD as well [0.0011 (0.0007-0.0016) and 0.0017 (0.0010-0.0024) g/cm2 , respectively]. Plant protein intake was associated with a lower total body and spine BMD [-0.0010 (-0.0020 to -0.0001) and -0.0019 (-0.0034 to -0.0004) g/cm2 , respectively]. Associations were similar between sexes. Participants with a high ratio of animal to plant protein intake had higher BMD. In participants with an adequate calcium intake and sufficient serum 25(OH)D concentrations, the association between total protein intake with total body and spine BMD became stronger. Likewise, the association between animal protein intake with total body BMD was stronger. In the longitudinal analyses, 340 participants [58% women, median (inter-quartile range): age 75 (70-81) years] were included. Interventions of 12 or 24 weeks with protein supplementation or protein supplementation combined with resistance exercise did not lead to significant improvements in BMD. CONCLUSIONS: An association between total and animal protein intake with higher BMD was found. In contrast, plant protein intake was associated with lower BMD. Research is warranted to further investigate the added value of dietary protein alongside calcium and vitamin D for BMD improvement, especially in osteopenic or osteoporotic individuals. Moreover, more research on the impact of a plant-based diet on bone health is needed.


Assuntos
Densidade Óssea , Proteínas Alimentares , Animais , Feminino , Masculino , Proteínas Alimentares/farmacologia , Cálcio , Absorciometria de Fóton , Proteínas de Plantas/farmacologia
14.
Ageing Res Rev ; 87: 101909, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36918115

RESUMO

Spaceflight and its associated stressors, such as microgravity, radiation exposure, confinement, circadian derailment and disruptive workloads represent an unprecedented type of exposome that is entirely novel from an evolutionary stand point. Within this perspective, we aimed to review the effects of prolonged spaceflight on immune-neuroendocrine systems, brain and brain-gut axis, cardiovascular system and musculoskeletal apparatus, highlighting in particular the similarities with an accelerated aging process. In particular, spaceflight-induced muscle atrophy/sarcopenia and bone loss, vascular and metabolic changes, hyper and hypo reaction of innate and adaptive immune system appear to be modifications shared with the aging process. Most of these modifications are mediated by molecular events that include oxidative and mitochondrial stress, autophagy, DNA damage repair and telomere length alteration, among others, which directly or indirectly converge on the activation of an inflammatory response. According to the inflammaging theory of aging, such an inflammatory response could be a driver of an acceleration of the normal, physiological rate of aging and it is likely that all the systemic modifications in turn lead to an increase of inflammaging in a sort of vicious cycle. The most updated countermeasures to fight these modifications will be also discussed in the light of their possible application not only for astronauts' benefit, but also for older adults on the ground.


Assuntos
Sarcopenia , Voo Espacial , Ausência de Peso , Humanos , Idoso , Envelhecimento , Encéfalo/metabolismo , Sarcopenia/metabolismo
15.
Ann Clin Transl Neurol ; 10(6): 918-932, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088544

RESUMO

OBJECTIVE: In Alzheimer's disease (AD), the presence of circadian dysfunction is well-known and may occur early in the disease course. The melanopsin retinal ganglion cell (mRGC) system may play a relevant role in contributing to circadian dysfunction. In this study, we aimed at evaluating, through a multimodal approach, the mRGC system in AD at an early stage of disease. METHODS: We included 29 mild-moderate AD (70.9 ± 11 years) and 26 (70.5 ± 8 years) control subjects. We performed an extensive neurophtalmological evaluation including optical coherence tomography with ganglion cell layer segmentation, actigraphic evaluation of the rest-activity rhythm, chromatic pupillometry analyzed with a new data-fitting approach, and brain functional MRI combined with light stimuli assessing the mRGC system. RESULTS: We demonstrated a significant thinning of the infero-temporal sector of the ganglion cell layer in AD compared to controls. Moreover, we documented by actigraphy the presence of a circadian-impaired AD subgroup. Overall, circadian measurements worsened by age. Chromatic pupillometry evaluation highlighted the presence of a pupil-light response reduction in the rod condition pointing to mRGC dendropathy. Finally, brain fMRI showed a reduced occipital cortex activation with blue light particularly for the sustained responses. INTERPRETATION: Overall, the results of this multimodal innovative approach clearly document a dysfunctional mRGC system at early stages of disease as a relevant contributing factor for circadian impairment in AD providing also support to the use of light therapy in AD.


Assuntos
Doença de Alzheimer , Células Ganglionares da Retina , Humanos , Doença de Alzheimer/diagnóstico por imagem , Retina , Opsinas de Bastonetes
16.
Artigo em Inglês | MEDLINE | ID: mdl-35329067

RESUMO

Low diet quality among the elderly may be correlated with some diseases, including Frailty Syndrome (FS). This decline in function restricts the activity of older people, resulting in higher assistance costs. The aim of this study was to increase knowledge of diet quality predictors. Dietary intake was assessed among 196 individuals aged 60+ years using the three-day record method and FS by Fried's criteria. Based on the compliance with the intake recommendation (% of EAR/AI), we distinguished three clusters that were homogeneous in terms of the nutritional quality of the diet, using Kohonen's neural networks. The prevalence of frailty in the entire group was 3.1%, pre-frailty 38.8%, and non-frailty 58.1%. Cluster 1 (91 people with the lowest diet quality) was composed of a statistically significant higher number of the elderly attending day care centers (20.7%), frail (6.9%), pre-frail (51.7%), very low vitamin D intake (23.8% of AI), using sun cream during the summer months (always 19.8% or often 39.6%), having diabetes (20.7%), having leg pain when walking (43.1%), and deteriorating health during the last year (53.5%). The study suggests the need to take initiatives leading to the improvement of the diet of the elderly, especially in day care senior centers, where there are more frail individuals, including nutritional education for the elderly and their caregivers.


Assuntos
Fragilidade , Idoso , Dieta , Idoso Fragilizado , Fragilidade/epidemiologia , Avaliação Geriátrica , Humanos , Estado Nutricional , Valor Nutritivo
17.
Cells ; 11(24)2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36552808

RESUMO

Epigenetic clocks were initially developed to track chronological age, but accumulating evidence indicates that they can also predict biological age. They are usually based on the analysis of DNA methylation by genome-wide methods, but targeted approaches, based on the assessment of a small number of CpG sites, are advisable in several settings. In this study, we developed a targeted epigenetic clock purposely optimized for the measurement of biological age. The clock includes six genomic regions mapping in ELOVL2, NHLRC1, AIM2, EDARADD, SIRT7 and TFAP2E genes, selected from a re-analysis of existing microarray data, whose DNA methylation is measured by EpiTYPER assay. In healthy subjects (n = 278), epigenetic age calculated using the targeted clock was highly correlated with chronological age (Spearman correlation = 0.89). Most importantly, and in agreement with previous results from genome-wide clocks, epigenetic age was significantly higher and lower than expected in models of increased (persons with Down syndrome, n = 62) and decreased (centenarians, n = 106; centenarians' offspring, n = 143; nutritional intervention in elderly, n = 233) biological age, respectively. These results support the potential of our targeted epigenetic clock as a new marker of biological age and open its evaluation in large cohorts to further promote the assessment of biological age in healthcare practice.


Assuntos
Envelhecimento , Epigênese Genética , Idoso , Idoso de 80 Anos ou mais , Humanos , Envelhecimento/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Epigenômica/métodos , Ubiquitina-Proteína Ligases/genética , Centenários , Síndrome de Down
18.
Geroscience ; 44(2): 881-896, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34921659

RESUMO

Many physiological processes in the human body follow a 24-h circadian rhythm controlled by the circadian clock system. Light, sensed by retina, is the predominant "zeitgeber" able to synchronize the circadian rhythms to the light-dark cycles. Circadian rhythm dysfunction and sleep disorders have been associated with aging and neurodegenerative diseases including mild cognitive impairment (MCI) and Alzheimer's disease (AD). In the present study, we aimed at investigating the genetic variability of clock genes in AD patients compared to healthy controls from Italy. We also included a group of Italian centenarians, considered as super-controls in association studies given their extreme phenotype of successful aging. We analyzed the exon sequences of eighty-four genes related to circadian rhythms, and the most significant variants identified in this first discovery phase were further assessed in a larger independent cohort of AD patients by matrix assisted laser desorption/ionization-time of flight mass spectrometry. The results identified a significant association between the rs3027178 polymorphism in the PER1 circadian gene with AD, the G allele being protective for AD. Interestingly, rs3027178 showed similar genotypic frequencies among AD patients and centenarians. These results collectively underline the relevance of circadian dysfunction in the predisposition to AD and contribute to the discussion on the role of the relationship between the genetics of age-related diseases and of longevity.


Assuntos
Doença de Alzheimer , Relógios Circadianos , Longevidade , Proteínas Circadianas Period , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Doença de Alzheimer/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Humanos , Itália , Longevidade/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
19.
Biochem Biophys Res Commun ; 408(1): 65-70, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21458417

RESUMO

Immunoproteasome has been associated to neurodegenerative and autoimmune diseases as a marker and regulator of inflammatory mechanisms. Its expression in the brain may occur upon neuroinflammation in different cell types and affect a variety of homeostatic and inflammatory pathways including the oxidized protein clearance and the self-antigen presentation. In the present study we investigated the immunoproteasome expression in hippocampi and cortex of patients affected by different histopathological forms of pharmaco-resistent mesial temporal lobe epilepsy. We identified a pathology-specific pattern of immunoproteasome expression, which could provide insight into the complex neuroinflammatory pathogenic components of this disease.


Assuntos
Cisteína Endopeptidases/metabolismo , Epilepsia do Lobo Temporal/imunologia , Hipocampo/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complexo de Endopeptidases do Proteassoma/metabolismo , Adulto Jovem
20.
Ageing Res Rev ; 71: 101422, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34391943

RESUMO

During aging the immune system (IS) undergoes remarkable changes that collectively are known as immunosenescence. It is a multifactorial and dynamic phenomenon that affects both natural and acquired immunity and plays a critical role in most chronic diseases in older people. For a long time, immunosenescence has been considered detrimental because it may lead to a low-grade, sterile chronic inflammation we proposed to call "inflammaging" and a progressive reduction in the ability to trigger effective antibody and cellular responses against infections and vaccinations. Recently, many scientists revised this negative meaning because it can be considered an essential adaptation/remodeling resulting from the lifelong immunological biography of single individuals from an evolutionary perspective. Inflammaging can be considered an adaptive process because it can trigger an anti-inflammatory response to counteract the age-related pro-inflammatory environment. Centenarians represent a valuable model to study the beneficial changes occurring in the IS with age. These extraordinary individuals reached the extreme limits of human life by slowing down the aging process and, in most cases, delaying, avoiding or surviving the major age-associated diseases. They indeed show a complex and heterogeneous phenotype determined by an improved ability to adapt and remodel in response to harmful stimuli. This review aims to point out the intimate relationship between immunosenescence and inflammaging and how these processes impact unsuccessful aging rather than longevity. We also describe the gut microbiota age-related changes as one of the significant triggers of inflammaging and the sex/gender differences in the immune system of the elderly, contributing to the sex/gender disparity in terms of epidemiology, pathophysiology, symptoms and severity of age-related diseases. Finally, we discuss how these phenomena could influence the susceptibility to COVID-19 infection.


Assuntos
COVID-19 , Imunossenescência , Idoso , Idoso de 80 Anos ou mais , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA