Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Circulation ; 145(14): 1084-1101, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236094

RESUMO

BACKGROUND: In most eukaryotic cells, the mitochondrial DNA (mtDNA) is transmitted uniparentally and present in multiple copies derived from the clonal expansion of maternally inherited mtDNA. All copies are therefore near-identical, or homoplasmic. The presence of >1 mtDNA variant in the same cytoplasm can arise naturally or result from new medical technologies aimed at preventing mitochondrial genetic diseases and improving fertility. The latter is called divergent nonpathologic mtDNA heteroplasmy (DNPH). We hypothesized that DNPH is maladaptive and usually prevented by the cell. METHODS: We engineered and characterized DNPH mice throughout their lifespan using transcriptomic, metabolomic, biochemical, physiologic, and phenotyping techniques. We focused on in vivo imaging techniques for noninvasive assessment of cardiac and pulmonary energy metabolism. RESULTS: We show that DNPH impairs mitochondrial function, with profound consequences in critical tissues that cannot resolve heteroplasmy, particularly cardiac and skeletal muscle. Progressive metabolic stress in these tissues leads to severe pathology in adulthood, including pulmonary hypertension and heart failure, skeletal muscle wasting, frailty, and premature death. Symptom severity is strongly modulated by the nuclear context. CONCLUSIONS: Medical interventions that may generate DNPH should address potential incompatibilities between donor and recipient mtDNA.


Assuntos
Fragilidade , Cardiopatias , Hipertensão Pulmonar , Adulto , Animais , DNA Mitocondrial/genética , Fragilidade/patologia , Cardiopatias/patologia , Heteroplasmia , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Camundongos , Mitocôndrias/genética
2.
Crit Care ; 23(1): 192, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142337

RESUMO

BACKGROUND: Quantification of intrinsic PEEP (PEEPi) has important implications for patients subjected to invasive mechanical ventilation. A new non-invasive breath-by-breath method (etCO2D) for determination of PEEPi is evaluated. METHODS: In 12 mechanically ventilated pigs, dynamic hyperinflation was induced by interposing a resistance in the endotracheal tube. Airway pressure, flow, and exhaled CO2 were measured at the airway opening. Combining different I:E ratios, respiratory rates, and tidal volumes, 52 different levels of PEEPi (range 1.8-11.7 cmH2O; mean 8.45 ± 0.32 cmH2O) were studied. The etCO2D is based on the detection of the end-tidal dilution of the capnogram. This is measured at the airway opening by means of a CO2 sensor in which a 2-mm leak is added to the sensing chamber. This allows to detect a capnogram dilution with fresh air when the pressure coming from the ventilator exceeds the PEEPi. This method was compared with the occlusion method. RESULTS: The etCO2D method detected PEEPi step changes of 0.2 cmH2O. Reference and etCO2D PEEPi presented a good correlation (R2 0.80, P < 0.0001) and good agreement, bias - 0.26, and limits of agreement ± 1.96 SD (2.23, - 2.74) (P < 0.0001). CONCLUSIONS: The etCO2D method is a promising accurate simple way of continuously measure and monitor PEEPi. Its clinical validity needs, however, to be confirmed in clinical studies and in conditions with heterogeneous lung diseases.


Assuntos
Dióxido de Carbono/análise , Respiração por Pressão Positiva Intrínseca/classificação , Animais , Modelos Animais de Doenças , Cinética , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Suínos/fisiologia , Estudos de Validação como Assunto
3.
Am J Respir Crit Care Med ; 198(7): 891-902, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29787304

RESUMO

RATIONALE: The contribution of aeration heterogeneity to lung injury during early mechanical ventilation of uninjured lungs is unknown. OBJECTIVES: To test the hypotheses that a strategy consistent with clinical practice does not protect from worsening in lung strains during the first 24 hours of ventilation of initially normal lungs exposed to mild systemic endotoxemia in supine versus prone position, and that local neutrophilic inflammation is associated with local strain and blood volume at global strains below a proposed injurious threshold. METHODS: Voxel-level aeration and tidal strain were assessed by computed tomography in sheep ventilated with low Vt and positive end-expiratory pressure while receiving intravenous endotoxin. Regional inflammation and blood volume were estimated from 2-deoxy-2-[(18)F]fluoro-d-glucose (18F-FDG) positron emission tomography. MEASUREMENTS AND MAIN RESULTS: Spatial heterogeneity of aeration and strain increased only in supine lungs (P < 0.001), with higher strains and atelectasis than prone at 24 hours. Absolute strains were lower than those considered globally injurious. Strains redistributed to higher aeration areas as lung injury progressed in supine lungs. At 24 hours, tissue-normalized 18F-FDG uptake increased more in atelectatic and moderately high-aeration regions (>70%) than in normally aerated regions (P < 0.01), with differential mechanistically relevant regional gene expression. 18F-FDG phosphorylation rate was associated with strain and blood volume. Imaging findings were confirmed in ventilated patients with sepsis. CONCLUSIONS: Mechanical ventilation consistent with clinical practice did not generate excessive regional strain in heterogeneously aerated supine lungs. However, it allowed worsening of spatial strain distribution in these lungs, associated with increased inflammation. Our results support the implementation of early aeration homogenization in normal lungs.


Assuntos
Lesão Pulmonar Aguda/patologia , Atelectasia Pulmonar/etiologia , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/etiologia , Lesão Pulmonar Aguda/diagnóstico por imagem , Lesão Pulmonar Aguda/etiologia , Análise de Variância , Animais , Biópsia por Agulha , Gasometria , Modelos Animais de Doenças , Endotoxemia/etiologia , Endotoxemia/fisiopatologia , Endotoxinas/farmacologia , Feminino , Fluordesoxiglucose F18 , Humanos , Imuno-Histoquímica , Infusões Intravenosas , Modelos Lineares , Análise Multivariada , Tomografia por Emissão de Pósitrons/métodos , Atelectasia Pulmonar/diagnóstico por imagem , Distribuição Aleatória , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/patologia , Testes de Função Respiratória , Fatores de Risco , Ovinos , Volume de Ventilação Pulmonar/fisiologia , Fatores de Tempo , Tomografia Computadorizada por Raios X/métodos
5.
Crit Care Med ; 45(11): e1157-e1164, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28872540

RESUMO

OBJECTIVES: To compare the effects of two lung-protective ventilation strategies on pulmonary vascular mechanics in early acute respiratory distress syndrome. DESIGN: Experimental study. SETTING: University animal research laboratory. SUBJECTS: Twelve pigs (30.8 ± 2.5 kg). INTERVENTIONS: Acute respiratory distress syndrome was induced by repeated lung lavages and injurious mechanical ventilation. Thereafter, animals were randomized to 4 hours ventilation according to the Acute Respiratory Distress Syndrome Network protocol or to an open lung approach strategy. Pressure and flow sensors placed at the pulmonary artery trunk allowed continuous assessment of pulmonary artery resistance, effective elastance, compliance, and reflected pressure waves. Respiratory mechanics and gas exchange data were collected. MEASUREMENTS AND MAIN RESULTS: Acute respiratory distress syndrome led to pulmonary vascular mechanics deterioration. Four hours after randomization, pulmonary vascular mechanics was similar in Acute Respiratory Distress Syndrome Network and open lung approach: resistance (578 ± 252 vs 626 ± 153 dyn.s/cm; p = 0.714), effective elastance, (0.63 ± 0.22 vs 0.58 ± 0.17 mm Hg/mL; p = 0.710), compliance (1.19 ± 0.8 vs 1.50 ± 0.27 mL/mm Hg; p = 0.437), and reflection index (0.36 ± 0.04 vs 0.34 ± 0.09; p = 0.680). Open lung approach as compared to Acute Respiratory Distress Syndrome Network was associated with improved dynamic respiratory compliance (17.3 ± 2.6 vs 10.5 ± 1.3 mL/cm H2O; p < 0.001), driving pressure (9.6 ± 1.3 vs 19.3 ± 2.7 cm H2O; p < 0.001), and venous admixture (0.05 ± 0.01 vs 0.22 ± 0.03, p < 0.001) and lower mean pulmonary artery pressure (26 ± 3 vs 34 ± 7 mm Hg; p = 0.045) despite of using a higher positive end-expiratory pressure (17.4 ± 0.7 vs 9.5 ± 2.4 cm H2O; p < 0.001). Cardiac index, however, was lower in open lung approach (1.42 ± 0.16 vs 2.27 ± 0.48 L/min; p = 0.005). CONCLUSIONS: In this experimental model, Acute Respiratory Distress Syndrome Network and open lung approach affected pulmonary vascular mechanics similarly. The use of higher positive end-expiratory pressures in the open lung approach strategy did not worsen pulmonary vascular mechanics, improved lung mechanics, and gas exchange but at the expense of a lower cardiac index.


Assuntos
Artéria Pulmonar/fisiopatologia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Animais , Modelos Animais de Doenças , Distribuição Aleatória , Mecânica Respiratória , Suínos
6.
Crit Care Med ; 45(3): e298-e305, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27763913

RESUMO

OBJECTIVE: To test whether positive end-expiratory pressure consistent with an open lung approach improves pulmonary vascular mechanics compared with higher or lower positive end-expiratory pressures in experimental acute respiratory distress syndrome. DESIGN: Experimental study. SETTING: Animal research laboratory. SUBJECTS: Ten pigs, 35 ± 5.2 kg. INTERVENTIONS: Acute respiratory distress syndrome was induced combining saline lung lavages with injurious mechanical ventilation. The positive end-expiratory pressure level resulting in highest compliance during a decremental positive end-expiratory pressure trial after lung recruitment was determined. Thereafter, three positive end-expiratory pressure levels were applied in a random order: hyperinflation, 6 cm H2O above; open lung approach, 2 cm H2O above; and collapse, 6 cm H2O below the highest compliance level. High fidelity pressure and flow sensors were placed at the main pulmonary artery for measuring pulmonary artery resistance (Z0), effective arterial elastance, compliance, and reflected pressure waves. MEASUREMENTS AND MAIN RESULTS: After inducing acute respiratory distress syndrome, Z0 and effective arterial elastance increased (from 218 ± 94 to 444 ± 115 dyn.s.cm and from 0.27 ± 0.14 to 0.62 ± 0.22 mm Hg/mL, respectively; p < 0.001), vascular compliance decreased (from 2.76 ± 0.86 to 1.48 ± 0.32 mL/mm Hg; p = 0.003), and reflected waves arrived earlier (0.23 ± 0.07 vs 0.14 ± 0.05, arbitrary unit; p = 0.002) compared with baseline. Comparing the three positive end-expiratory pressure levels, open lung approach resulted in the lowest: 1) Z0 (297 ± 83 vs 378 ± 79 dyn.s.cm, p = 0.033, and vs 450 ± 119 dyn.s.cm, p = 0.002); 2) effective arterial elastance (0.37 ± 0.08 vs 0.50 ± 0.15 mm Hg/mL, p = 0.04, and vs 0.61 ± 0.12 mm Hg/mL, p < 0.001), and 3) reflection coefficient (0.35 ± 0.17 vs 0.48 ± 0.10, p = 0.024, and vs 0.53 ± 0.19, p = 0.005), comparisons with hyperinflation and collapse, respectively. CONCLUSIONS: In this experimental setting, positive end-expiratory pressure consistent with the open lung approach resulted in the best pulmonary vascular mechanics compared with higher or lower positive end-expiratory pressure settings.


Assuntos
Respiração com Pressão Positiva/métodos , Artéria Pulmonar/fisiopatologia , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Animais , Complacência (Medida de Distensibilidade) , Modelos Animais de Doenças , Pressão , Testes de Função Respiratória , Suínos , Resistência Vascular
7.
Crit Care Med ; 44(1): 32-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26672923

RESUMO

OBJECTIVE: The open lung approach is a mechanical ventilation strategy involving lung recruitment and a decremental positive end-expiratory pressure trial. We compared the Acute Respiratory Distress Syndrome network protocol using low levels of positive end-expiratory pressure with open lung approach resulting in moderate to high levels of positive end-expiratory pressure for the management of established moderate/severe acute respiratory distress syndrome. DESIGN: A prospective, multicenter, pilot, randomized controlled trial. SETTING: A network of 20 multidisciplinary ICUs. PATIENTS: Patients meeting the American-European Consensus Conference definition for acute respiratory distress syndrome were considered for the study. INTERVENTIONS: At 12-36 hours after acute respiratory distress syndrome onset, patients were assessed under standardized ventilator settings (FIO2≥0.5, positive end-expiratory pressure ≥10 cm H2O). If Pao2/FIO2 ratio remained less than or equal to 200 mm Hg, patients were randomized to open lung approach or Acute Respiratory Distress Syndrome network protocol. All patients were ventilated with a tidal volume of 4 to 8 ml/kg predicted body weight. MEASUREMENTS AND MAIN RESULTS: From 1,874 screened patients with acute respiratory distress syndrome, 200 were randomized: 99 to open lung approach and 101 to Acute Respiratory Distress Syndrome network protocol. Main outcome measures were 60-day and ICU mortalities, and ventilator-free days. Mortality at day-60 (29% open lung approach vs. 33% Acute Respiratory Distress Syndrome Network protocol, p = 0.18, log rank test), ICU mortality (25% open lung approach vs. 30% Acute Respiratory Distress Syndrome network protocol, p = 0.53 Fisher's exact test), and ventilator-free days (8 [0-20] open lung approach vs. 7 [0-20] d Acute Respiratory Distress Syndrome network protocol, p = 0.53 Wilcoxon rank test) were not significantly different. Airway driving pressure (plateau pressure - positive end-expiratory pressure) and PaO2/FIO2 improved significantly at 24, 48 and 72 hours in patients in open lung approach compared with patients in Acute Respiratory Distress Syndrome network protocol. Barotrauma rate was similar in both groups. CONCLUSIONS: In patients with established acute respiratory distress syndrome, open lung approach improved oxygenation and driving pressure, without detrimental effects on mortality, ventilator-free days, or barotrauma. This pilot study supports the need for a large, multicenter trial using recruitment maneuvers and a decremental positive end-expiratory pressure trial in persistent acute respiratory distress syndrome.


Assuntos
Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Síndrome do Desconforto Respiratório/mortalidade , Fatores de Tempo
8.
Intensive Care Med Exp ; 12(1): 34, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592650

RESUMO

BACKGROUND: The same principle behind pulse wave analysis can be applied on the pulmonary artery (PA) pressure waveform to estimate right ventricle stroke volume (RVSV). However, the PA pressure waveform might be influenced by the direct transmission of the intrathoracic pressure changes throughout the respiratory cycle caused by mechanical ventilation (MV), potentially impacting the reliability of PA pulse wave analysis (PAPWA). We assessed a new method that minimizes the direct effect of the MV on continuous PA pressure measurements and enhances the reliability of PAPWA in tracking beat-to-beat RVSV. METHODS: Continuous PA pressure and flow were simultaneously measured for 2-3 min in 5 pigs using a high-fidelity micro-tip catheter and a transonic flow sensor around the PA trunk, both pre and post an experimental ARDS model. RVSV was estimated by PAPWA indexes such as pulse pressure (SVPP), systolic area (SVSystAUC) and standard deviation (SVSD) beat-to-beat from both corrected and non-corrected PA signals. The reference RVSV was derived from the PA flow signal (SVref). RESULTS: The reliability of PAPWA in tracking RVSV on a beat-to-beat basis was enhanced after accounting for the direct impact of intrathoracic pressure changes induced by MV throughout the respiratory cycle. This was evidenced by an increase in the correlation between SVref and RVSV estimated by PAPWA under healthy conditions: rho between SVref and non-corrected SVSD - 0.111 (0.342), corrected SVSD 0.876 (0.130), non-corrected SVSystAUC 0.543 (0.141) and corrected SVSystAUC 0.923 (0.050). Following ARDS, correlations were SVref and non-corrected SVSD - 0.033 (0.262), corrected SVSD 0.839 (0.077), non-corrected SVSystAUC 0.483 (0.114) and corrected SVSystAUC 0.928 (0.026). Correction also led to reduced limits of agreement between SVref and SVSD and SVSystAUC in the two evaluated conditions. CONCLUSIONS: In our experimental model, we confirmed that correcting for mechanical ventilation induced changes during the respiratory cycle improves the performance of PAPWA for beat-to-beat estimation of RVSV compared to uncorrected measurements. This was demonstrated by a better correlation and agreement between the actual SV and the obtained from PAPWA.

9.
Sci Rep ; 14(1): 5832, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461172

RESUMO

Regional pulmonary perfusion (Q) has been investigated using blood volume (Fb) imaging as an easier-to-measure surrogate. However, it is unclear if changing pulmonary conditions could affect their relationship. We hypothesized that vascular changes in early acute respiratory distress syndrome (ARDS) affect Q and Fb differently. Five sheep were anesthetized and received lung protective mechanical ventilation for 20 h while endotoxin was continuously infused. Using dynamic 18F-FDG and 13NN Positron Emission Tomography (PET), regional Fb and Q were analysed in 30 regions of interest (ROIs) and normalized by tissue content (Fbn and Qn, respectively). After 20 h, the lung injury showed characteristics of early ARDS, including gas exchange and lung mechanics. PET images of Fbn and Qn showed substantial differences between baseline and lung injury. Lung injury caused a significant change in the Fbn-Qn relationship compared to baseline (p < 0.001). The best models at baseline and lung injury were Fbn = 0.32 + 0.690Qn and Fbn = 1.684Qn-0.538Qn2, respectively. Endotoxine-associated early ARDS changed the relationship between Fb and Q, shifting from linear to curvilinear. Effects of endotoxin exposure on the vasoactive blood flow regulation were most likely the key factor for this change limiting the quantitative accuracy of Fb imaging as a surrogate for regional Q.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Ovinos , Tomografia Computadorizada por Raios X , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Perfusão , Volume Sanguíneo , Endotoxinas/toxicidade
10.
J Clin Monit Comput ; 27(1): 47-53, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22911273

RESUMO

The genesis of cardiogenic oscillations, i.e. the small waves in airway pressure (COS(paw)) and flow (COS(flow)) signals recorded at the airway opening is under debate. We hypothesized that these waves are originated from cyclic changes in pulmonary artery (PA) pressure and flow but not from the physical transmission of heartbeats onto the lungs. The aim of this study was to test this hypothesis. In 10 anesthetized pigs, COS were evaluated during expiratory breath-holds at baseline with intact chest and during open chest conditions at: (1) close contact between heart and lungs; (2) no heart-lungs contact by lifting the heart apex outside the thoracic cavity; (3) PA clamping at the main trunk during 10 s; and (4) during manual massage after cardiac arrest maintaining the heart apex outside the thorax, with and without PA clamping. Baseline COS(paw) and COS(flow) amplitude were 0.70 ± 0.08 cmH(2)O and 0.51 ± 0.06 L/min, respectively. Both COS amplitude decreased during open chest conditions in step 1 and 2 (p < 0.05). However, COS(paw) and COS(flow) amplitude did not depend on whether the heart was in contact or isolated from the surrounding lung parenchyma. COS(paw) and COS(flow) disappeared when pulmonary blood flow was stopped after clamping PA in all animals. Manual heart massages reproduced COS but they disappeared when PA was clamped during this maneuver. The transmission of PA pulsatilty across the lungs generates COS(paw) and COS(flow) measured at the airway opening. This information has potential applications for respiratory monitoring.


Assuntos
Coração/fisiologia , Pulmão/irrigação sanguínea , Artéria Pulmonar/fisiologia , Fluxo Pulsátil/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Mecânica Respiratória/fisiologia , Animais , Frequência Cardíaca/fisiologia , Hemodinâmica/fisiologia , Pulmão/fisiologia , Modelos Animais , Artéria Pulmonar/cirurgia , Instrumentos Cirúrgicos , Suínos
11.
AoB Plants ; 15(4): plad057, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37649982

RESUMO

Anagenetic speciation is an important mode of evolution in oceanic islands, yet relatively understudied compared to adaptive radiation. In the Macaronesian region, three closely related species of Artemisia (i.e. A. argentea, A. thuscula and A. gorgonum) are each endemic from a single archipelago (i.e. Madeira, Canary Islands and Cape Verde, respectively), representing a perfect opportunity to study three similar but independent anagenetic speciation processes. By analysing plastid and nuclear DNA sequences, as well as nuclear DNA amount data, generated from a comprehensive sampling in all the islands and archipelagos where these species are currently distributed, we intend to find common evolutionary patterns that help us explain the limited taxonomic diversification experienced by endemic Macaronesian Artemisia. Our time-calibrated phylogenetic reconstruction suggested that divergence among the three lineages occurred in a coincidental short period of time during the Pleistocene. Haplotype and genetic differentiation analyses showed similar diversity values among A. argentea, A. thuscula and A. gorgonum. Clear phylogeographic patterns-showing comparable genetic structuring among groups of islands-were also found within the three archipelagos. Even from the cytogenetic point of view, the three species presented similarly lower genome size values compared to the mainland closely related species A. arborescens. We hypothesize that the limited speciation experienced by the endemic Artemisia in Madeira, Canary Islands and Cape Verde archipelagos could be related to their recent parallel evolutionary histories as independent lineages, combined with certain shared characteristics of seed dispersal, pollen transport and type of habitat.

12.
Crit Care Med ; 39(10): 2294-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21666452

RESUMO

OBJECTIVES: Although pleural effusion reduces respiratory system compliance by restricting the lungs, the effusion volume is partially accommodated by chest wall expansion. The implications for these opposing volume changes on airway pressure monitoring in ventilated patients with pleural effusion are unreported. We investigated the interactions among pleural effusion, positive end-expiratory pressure, and indices of respiratory mechanics in a swine model. DESIGN: Interventional animal model. SETTING: Hospital animal research facility. SUBJECTS: Nine deeply anesthetized swine. INTERVENTIONS: The preparation included tracheostomy, arterial/venous catheter placement, and chest tube insertion. Animals were ventilated throughout the study at 9 mL/kg, and frequency was adjusted to maintain normocapnia (inspiratory:expiratory=1:2, FIO2=0.5) and positive end-expiratory pressure of 1 cm H2O and 10 cm H2O. Fluid was instilled into the right pleural space to simulate effusions of 13 mL/kg (pleural effusion 1) and 26 mL/kg (pleural effusion 2). MEASUREMENTS AND MAIN RESULTS: Quantitative computerized tomography studies (in five animals) and functional residual capacity volumes (wash-in/wash-out technique) were obtained for each pleural effusion/positive end-expiratory pressure combination. Mean functional residual capacity compared to baseline at positive end-expiratory pressure of 1 cm H2O was decreased by pleural effusion 1 and pleural effusion 2 (-42%, -64%) and restored by positive end-expiratory pressure of 10 cm H2O (moderate) to +23% of baseline for pleural effusion 1 and +1% for pleural effusion 2. Plateau pressure increased and compliance decreased in response to pleural effusion 1 and pleural effusion 2. Moderate positive end-expiratory pressure applied during both pleural effusion quantities restored plateau pressure and tidal compliance to prepleural effusion values. Computed tomography studies revealed lung compression and tidal derecruitment cycles occurring with pleural effusion at positive end-expiratory pressure of 1 cm H2O, whereas a moderate positive end-expiratory pressure restored prepleural effusion functional residual capacity and prevented lung and intratidal derecruitment. CONCLUSIONS: When pleural effusion is present, respiratory mechanics must be interpreted cautiously and sufficient positive end-expiratory pressure should be applied to prevent extensive collapse and intratidal cycles of recruitment/derecruitment.


Assuntos
Derrame Pleural/fisiopatologia , Respiração Artificial/métodos , Mecânica Respiratória , Animais , Capacidade Residual Funcional , Humanos , Respiração com Pressão Positiva/métodos , Troca Gasosa Pulmonar , Respiração Artificial/efeitos adversos
13.
J Am Coll Cardiol ; 78(10): 1001-1011, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34474731

RESUMO

BACKGROUND: Severe coronavirus disease-2019 (COVID-19) can progress to an acute respiratory distress syndrome (ARDS), which involves alveolar infiltration by activated neutrophils. The beta-blocker metoprolol has been shown to ameliorate exacerbated inflammation in the myocardial infarction setting. OBJECTIVES: The purpose of this study was to evaluate the effects of metoprolol on alveolar inflammation and on respiratory function in patients with COVID-19-associated ARDS. METHODS: A total of 20 COVID-19 patients with ARDS on invasive mechanical ventilation were randomized to metoprolol (15 mg daily for 3 days) or control (no treatment). All patients underwent bronchoalveolar lavage (BAL) before and after metoprolol/control. The safety of metoprolol administration was evaluated by invasive hemodynamic and electrocardiogram monitoring and echocardiography. RESULTS: Metoprolol administration was without side effects. At baseline, neutrophil content in BAL did not differ between groups. Conversely, patients randomized to metoprolol had significantly fewer neutrophils in BAL on day 4 (median: 14.3 neutrophils/µl [Q1, Q3: 4.63, 265 neutrophils/µl] vs median: 397 neutrophils/µl [Q1, Q3: 222, 1,346 neutrophils/µl] in the metoprolol and control groups, respectively; P = 0.016). Metoprolol also reduced neutrophil extracellular traps content and other markers of lung inflammation. Oxygenation (PaO2:FiO2) significantly improved after 3 days of metoprolol treatment (median: 130 [Q1, Q3: 110, 162] vs median: 267 [Q1, Q3: 199, 298] at baseline and day 4, respectively; P = 0.003), whereas it remained unchanged in control subjects. Metoprolol-treated patients spent fewer days on invasive mechanical ventilation than those in the control group (15.5 ± 7.6 vs 21.9 ± 12.6 days; P = 0.17). CONCLUSIONS: In this pilot trial, intravenous metoprolol administration to patients with COVID-19-associated ARDS was safe, reduced exacerbated lung inflammation, and improved oxygenation. Repurposing metoprolol for COVID-19-associated ARDS appears to be a safe and inexpensive strategy that can alleviate the burden of the COVID-19 pandemic.


Assuntos
COVID-19/transmissão , Estado Terminal/terapia , Metoprolol/administração & dosagem , Pandemias , Respiração Artificial/métodos , SARS-CoV-2 , Antagonistas de Receptores Adrenérgicos beta 1/administração & dosagem , Adulto , Idoso , COVID-19/epidemiologia , Feminino , Humanos , Injeções Intravenosas , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos
14.
Respir Care ; 55(11): 1464-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20979673

RESUMO

BACKGROUND: The measurement of functional residual capacity (FRC) in ventilated patients could help track the extent of acute lung disease, monitor recruitment of unstable lung units, or guide the use of PEEP. Quantitative analysis of computed tomography (CT) images of the lungs is currently the accepted standard for FRC measurement (FRC-CT), but is impractical for routine use. Gas dilution and gas tracer technologies, while attractive for research applications, require specialized equipment and skills missing from the clinical setting. We simultaneously evaluated FRC-CT and FRC determined by a ventilator-incorporated wash-in/wash-out (FRC-WI/WO) method in an animal model of unilateral pleural effusion that varied the fluid volume instilled and the applied PEEP. METHODS: A swine model (n = 6) of unilateral pleural effusion was created by injecting boluses of radio-opaque fluid (iopromide) (13 mL/kg and then 26 mL/kg) into the right thoracic cavity. FRC-CT and FRC-WI/WO were simultaneously obtained, at 2 PEEP levels, at baseline and at both pleural-effusion volumes. RESULTS: A correlation coefficient (r²) of 0.89 between FRC-CT and FRC-WI/WO revealed concordance between the techniques, with directional agreement and acceptable bias and precision under all tested conditions. CONCLUSIONS: We found excellent concordance between FRC-WI/WO and FRC-CT in an animal model of unilateral pleural effusion that stressed the capability of this technology. The technical advantage of the wash-in/wash-out technique is its incorporation into ventilator operation without requiring adjustments to ventilation.


Assuntos
Capacidade Residual Funcional/fisiologia , Pulmão/diagnóstico por imagem , Nitrogênio/análise , Oxigênio/análise , Tomografia Computadorizada por Raios X , Animais , Testes Respiratórios/métodos , Modelos Animais de Doenças , Nitrogênio/metabolismo , Oxigênio/metabolismo , Respiração com Pressão Positiva/métodos , Testes de Função Respiratória/métodos , Sus scrofa
15.
Ann Transl Med ; 8(12): 795, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32647720

RESUMO

In the late 19th century, Otto Frank published the first description of a ventricular pressure-volume diagram, thus laid the foundation for modern cardiovascular physiology. Since then, the analysis of the pressure-volume loops became a reference tool for the study of the ventricular pump properties. However, understanding cardiovascular performance requires both the evaluation of ventricular properties and the modulating effects of the arterial system, since the heart and the arterial tree are anatomically and functionally related structures. The study of the coupling between the cardiac function and the properties of the arterial system, or ventriculo-arterial (VA) coupling, provides then a comprehensive characterization of the performance of the cardiovascular system in both health and disease. The assessment of cardiovascular function is an essential element of the hemodynamic evaluation of critically ill patients. Both left and right ventricular dysfunction and arterial system disturbances are frequent in these patients. Since VA coupling ultimately defines de performance and efficiency of the cardiovascular system, the analysis of the interaction between the heart and the arterial system could offer a broader perspective of the hemodynamic disorders associated with common conditions, such as septic shock, heart failure, or right ventricular dysfunction. Moreover, this analysis could also provide valuable information about their pathophysiological mechanisms and may help to determine the best therapeutic strategy to correct them. In this review, we will describe the basic principles of the VA coupling assessment, its limitations, and the most common methods for its estimation at the bedside. Then, we will summarize the current knowledge of the application of VA coupling in critically ill patients and suggest some recommendations for further research.

16.
Arch Bronconeumol ; 56(9): 564-570, 2020 Sep.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-35380110

RESUMO

INTRODUCTION: Mortality risk prediction for Intermediate Respiratory Care Unit's (IRCU) patients can facilitate optimal treatment in high-risk patients. While Intensive Care Units (ICUs) have a long term experience in using algorithms for this purpose, due to the special features of the IRCUs, the same strategics are not applicable. The aim of this study is to develop an IRCU specific mortality predictor tool using machine learning methods. METHODS: Vital signs of patients were recorded from 1966 patients admitted from 2007 to 2017 in the Jiménez Díaz Foundation University Hospital's IRCU. A neural network was used to select the variables that better predict mortality status. Multivariate logistic regression provided us cut-off points that best discriminated the mortality status for each of the parameters. A new guideline for risk assessment was applied and mortality was recorded during one year. RESULTS: Our algorithm shows that thrombocytopenia, metabolic acidosis, anemia, tachypnea, age, sodium levels, hypoxemia, leukocytopenia and hyperkalemia are the most relevant parameters associated with mortality. First year with this decision scene showed a decrease in failure rate of a 50%. CONCLUSIONS: We have generated a neural network model capable of identifying and classifying mortality predictors in the IRCU of a general hospital. Combined with multivariate regression analysis, it has provided us with an useful tool for the real-time monitoring of patients to detect specific mortality risks. The overall algorithm can be scaled to any type of unit offering personalized results and will increase accuracy over time when more patients are included to the cohorts.

17.
EClinicalMedicine ; 25: 100454, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32838232

RESUMO

BACKGROUND: Identification of effective treatments in severe cases of COVID-19 requiring mechanical ventilation represents an unmet medical need. Our aim was to determine whether the administration of adipose-tissue derived mesenchymal stromal cells (AT-MSC) is safe and potentially useful in these patients. METHODS: Thirteen COVID-19 adult patients under invasive mechanical ventilation who had received previous antiviral and/or anti-inflammatory treatments (including steroids, lopinavir/ritonavir, hydroxychloroquine and/or tocilizumab, among others) were treated with allogeneic AT-MSC. Ten patients received two doses, with the second dose administered a median of 3 days (interquartile range-IQR- 1 day) after the first one. Two patients received a single dose and another patient received 3 doses. Median number of cells per dose was 0.98 × 106 (IQR 0.50 × 106) AT-MSC/kg of recipient's body weight. Potential adverse effects related to cell infusion and clinical outcome were assessed. Additional parameters analyzed included changes in imaging, analytical and inflammatory parameters. FINDINGS: First dose of AT-MSC was administered at a median of 7 days (IQR 12 days) after mechanical ventilation. No adverse events were related to cell therapy. With a median follow-up of 16 days (IQR 9 days) after the first dose, clinical improvement was observed in nine patients (70%). Seven patients were extubated and discharged from ICU while four patients remained intubated (two with an improvement in their ventilatory and radiological parameters and two in stable condition). Two patients died (one due to massive gastrointestinal bleeding unrelated to MSC therapy). Treatment with AT-MSC was followed by a decrease in inflammatory parameters (reduction in C-reactive protein, IL-6, ferritin, LDH and d-dimer) as well as an increase in lymphocytes, particularly in those patients with clinical improvement. INTERPRETATION: Treatment with intravenous administration of AT-MSC in 13 severe COVID-19 pneumonia under mechanical ventilation in a small case series did not induce significant adverse events and was followed by clinical and biological improvement in most subjects. FUNDING: None.

18.
Ann Transl Med ; 6(2): 27, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29430444

RESUMO

Acute respiratory distress syndrome (ARDS) is the most severe form of acute respiratory failure characterized by diffuse alveolar and endothelial damage. The severe pathophysiological changes in lung parenchyma and pulmonary circulation together with the effects of positive pressure ventilation profoundly affect heart lung interactions in ARDS. The term pulmonary vascular dysfunction (PVD) refers to the specific involvement of the vascular compartment in ARDS and is expressed clinically by an increase in pulmonary arterial (PA) pressure and pulmonary vascular resistance both affecting right ventricular (RV) afterload. When severe, PVD can lead to RV failure which is associated to an increased mortality. The effect of PVD on RV function is not only a consequence of increased pulmonary vascular resistance as afterload is a much more complex phenomenon that includes all factors that oppose efficient ventricular ejection. Impaired pulmonary vascular mechanics including increased arterial elastance and augmented wave-reflection phenomena are commonly seen in ARDS and can additionally affect RV afterload. The use of selective pulmonary vasodilators and lung protective mechanical ventilation strategies are therapeutic interventions that can ameliorate PVD. Prone positioning and the open lung approach (OLA) are especially attractive strategies to improve PVD due to their effects on increasing functional lung volume. In this review we will describe some pathophysiological aspects of heart-lung interactions during the ventilatory support of ARDS, its clinical assessment and discuss therapeutic interventions to prevent the occurrence and progression of PVD and RV failure.

20.
Front Cardiovasc Med ; 5: 110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30159317

RESUMO

A significant glycolytic shift in the cells of the pulmonary vasculature and right ventricle during pulmonary arterial hypertension (PAH) has been recently described. Due to the late complications and devastating course of any variant of this disease, there is a great need for animal models that reproduce potential metabolic reprograming of PAH. Our objective is to study, in situ, the metabolic reprogramming in the lung and the right ventricle of a mouse model of PAH by metabolomic profiling and molecular imaging. PAH was induced by chronic hypoxia exposure plus treatment with SU5416, a vascular endothelial growth factor receptor inhibitor. Lung and right ventricle samples were analyzed by magnetic resonance spectroscopy. In vivo energy metabolism was studied by positron emission tomography. Our results show that metabolomic profiling of lung samples clearly identifies significant alterations in glycolytic pathways. We also confirmed an upregulation of glutamine metabolism and alterations in lipid metabolism. Furthermore, we identified alterations in glycine and choline metabolism in lung tissues. Metabolic reprograming was also confirmed in right ventricle samples. Lactate and alanine, endpoints of glycolytic oxidation, were found to have increased concentrations in mice with PAH. Glutamine and taurine concentrations were correlated to specific ventricle hypertrophy features. We demonstrated that most of the metabolic features that characterize human PAH were detected in a hypoxia plus SU5416 mouse model and it may become a valuable tool to test new targeting treatments of this severe disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA