Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 4): 114710, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334830

RESUMO

The collapse of the Fundão tailings dam (Minas Gerais, Brazil) was the largest environmental disaster in Brazil's history and in the world mining industry. This disaster carried approximately 55 million m3 of iron ore tailings along the rivers and the lagoons of the Doce river basin. Although multiple studies assessed the impact on microbial communities in those rivers and lagoons right after the dam rupture, it is not known whether the microbiome in those environments remains impacted years after the disaster. Assessing the microbiome is very important to evaluate impacts and evaluate the health of the environment, due to the several ecological roles played by microorganisms. Here, we evaluated the impact of the dam failure on water and sediment bacteriome and archaeome by high-throughput next-generation sequencing. Samples were taken from two rivers and six lagoons during the dry and rainy seasons approximately three years post disturbance. The results showed a large number and abundance of microbial groups associated with the presence of heavy metals and mine tailings sediments. Some of these microorganisms were also reported in large abundance in the impacted rivers shortly after the Fundão dam rupture. Among the most abundant microorganisms in the Doce River, we can highlight the bacteria hgcI clade and the archaea Nitrososphera sp. in the water, and the bacteria Anaerolineaceae sp. in the sediment. These results suggest that the microbiome of the rivers and the lagoons in the Doce river basin remains severely impacted by the Fundão tailings dam failure even three years after the disaster. The presence of those microorganisms can also help to assess the occurrence of the Fundão dam sediment in other environments.


Assuntos
Desastres , Poluentes Químicos da Água , Rios , Monitoramento Ambiental , Brasil , Poluentes Químicos da Água/análise , Mineração , Água
2.
J Clin Periodontol ; 46(12): 1192-1204, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31380576

RESUMO

BACKGROUND AND AIM: This study compared the oral bacteriome between HIV-1-infected and non-HIV-1-infected Brazilian children/teenagers. METHODS: Whole saliva, biofilm from the dorsal surface of the tongue and biofilm from supragingival and subgingival sites were collected from 27 HIV-1-infected and 30 non-HIV-1-infected individuals. Bacterial genomic DNA was extracted and 16S rRNA genes were sequenced using next-generation sequencing technology (Ion Torrent). RESULTS: In the supragingival biofilm, the phylum Firmicutes and genus Streptococcus sp. were more frequent in HIV-1-infected (95% and 78%, respectively) than in non-HIV-1-infected individuals (40% and 24%, respectively). In the subgingival biofilm of HIV-infected participants, the relative abundance of the Veillonella sp. and Prevotella sp. genera were higher than in non-HIV-1-infected participants. On the tongue, the genera with greater relative abundance in HIV-1-infected individuals were Neisseria sp. (21%). In saliva, the difference of the genus Prevotella sp. between non-HIV-1-infected and HIV-1-infected individuals was 15% and 7%, respectively. The Chao index revealed an increase in the richness of both sub- and supragingival biofilms in the HIV-1-infected samples compared with non-HIV-1-infected samples. CONCLUSION: HIV-1-infected children/teenagers have a higher frequency of the phyla Firmicutes and genus Streptococcus, and their oral microbiome shows more complexity than that of non-HIV-1-infected children/teenagers.


Assuntos
HIV-1 , Adolescente , Biofilmes , Brasil , Criança , DNA Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Ribossômico 16S , Análise de Sequência de DNA
3.
Acta Odontol Scand ; 75(6): 423-428, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28580816

RESUMO

OBJECTIVE: This study investigated the presence of Enterococcus faecalis in primary teeth with primary root canal infections and related to the possible failure of pulpectomy outcome after 36 months. MATERIAL AND METHODS: Root canal samples were obtained from 25 out of 244 patients using the sterile paper cone method. The identification of E. faecalis was done with culture and molecular tests using species-specific 16S rRNA gene-based polymerase chain reaction (PCR). After 36 months, the pulpectomy outcome was evaluated. RESULTS: Enterococcus faecalis was found in five (20%) samples, and dental caries were the cause of primary infection in all of them. Pulpectomy outcome was evaluated only in teeth that completed the entire clinical protocol and were followed up to 36 months (n = 8). From these, 75% (n = 6) were successful and 25% (n = 2) failed. E. faecalis was present in 50% of both successful and failed cases. CONCLUSIONS: Enterococcus faecalis was not related to the failure of endodontic treatment of primary teeth.


Assuntos
Cárie Dentária/microbiologia , Cavidade Pulpar/microbiologia , Enterococcus faecalis/isolamento & purificação , Tratamento do Canal Radicular , Dente Decíduo/microbiologia , Humanos , Masculino , Reação em Cadeia da Polimerase
4.
Extremophiles ; 20(6): 875-884, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27709303

RESUMO

The Antarctic soil microbial community has a crucial role in the growth and stabilization of higher organisms, such as vascular plants. Analysis of the soil microbiota composition in that extreme environmental condition is crucial to understand the ecological importance and biotechnological potential. We evaluated the efficiency of isolation and abundance of strict anaerobes in the vascular plant Deschampsia antarctica rhizosphere collected in the Antarctic's Admiralty Bay and associated biodiversity to metabolic perspective and enzymatic activity. Using anaerobic cultivation methods, we identified and isolated a range of microbial taxa whose abundance was associated with Plant Growth-Promoting Bacteria (PGPB) and presences were exclusively endemic to the Antarctic continent. Firmicutes was the most abundant phylum (73 %), with the genus Clostridium found as the most isolated taxa. Here, we describe two soil treatments (oxygen gradient and heat shock) and 27 physicochemical culture conditions were able to increase the diversity of anaerobic bacteria isolates. Heat shock treatment allowed to isolate a high percentage of new species (63.63 %), as well as isolation of species with high enzymatic activity (80.77 %), which would have potential industry application. Our findings contribute to the understanding of the role of anaerobic microbes regarding ecology, evolutionary, and biotechnological features essential to the Antarctic ecosystem.


Assuntos
Bactérias Anaeróbias/isolamento & purificação , Microbiologia Industrial , Microbiota , Poaceae/microbiologia , Rizosfera , Adaptação Fisiológica , Regiões Antárticas , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/enzimologia , Bactérias Anaeróbias/genética , Temperatura Baixa , Microbiologia do Solo
5.
Environ Pollut ; 344: 123237, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159625

RESUMO

Massive amounts of microplastics are transported daily from the oceans and rivers onto beaches. The ocean plastisphere is a hotspot and a vector for antibiotic resistance genes (ARGs) and potentially pathogenic bacteria. However, very little is known about the plastisphere in beach sand. Thus, to describe whether the microplastics from beach sand represent a risk to human health, we evaluated the bacteriome and abundance of ARGs on microplastic and sand sampled at the drift line and supralittoral zones of four beaches of poor and good water quality. The bacteriome was evaluated by sequencing of 16S rRNA gene, and the ARGs and bacterial abundances were evaluated by high-throughput real-time PCR. The results revealed that the microplastic harbored a bacterial community that is more abundant and distinct from that of beach sand, as well as a greater abundance of potential human and marine pathogens, especially the microplastics deposited closer to seawater. Microplastics also harbored a greater number and abundance of ARGs. All antibiotic classes evaluated were found in the microplastic samples, but not in the beach sand ones. Additionally, 16 ARGs were found on the microplastic alone, including genes related to multidrug resistance (blaKPC, blaCTX-M, tetM, mdtE and acrB_1), genes that have the potential to rapidly and horizontally spread (blaKPC, blaCTX-M, and tetM), and the gene that confers resistance to antibiotics that are typically regarded as the ultimate line of defense against severe multi-resistant bacterial infections (blaKPC). Lastly, microplastic harbored a similar bacterial community and ARGs regardless of beach water quality. Our findings suggest that the accumulation of microplastics in beach sand worldwide may constitute a potential threat to human health, even in beaches where the water quality is deemed satisfactory. This phenomenon may facilitate the emergence and dissemination of bacteria that are resistant to multiple drugs.


Assuntos
Microplásticos , Qualidade da Água , Humanos , Plásticos , Areia , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
6.
Int J Microbiol ; 2023: 5992113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37644978

RESUMO

Isoetes cangae is a native plant found only in a permanent pond in Serra dos Carajás in the Amazon region. Plant-associated microbial communities are recognized to be responsible for biological processes essential for the health, growth, and even adaptation of plants to environmental stresses. In this sense, the aims of this work were to isolate, identify, and evaluate the properties of endophytic bacteria isolated from I. cangae. The bioprospecting of potentially growth-promoting endophytes required the following steps to be taken: isolation of endophytic colonies, molecular identification by 16S rDNA sequence analysis, and evaluation of the bacterial potential for nitrogen fixation, production of indole acetic acid and siderophores, as well as phosphate solubilization and mineralization. Bacillus sp., Rhizobium sp., Priestia sp., Acinetobacter sp., Rossellomorea sp., Herbaspirillum sp., Heyndrickxia sp., and Metabacillus sp., among other bacterial species, were identified. The isolates showed to be highly promising, evidencing the physiological importance for the plant and having the potential to promote plant growth.

7.
J Am Nutr Assoc ; 41(8): 788-795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35512757

RESUMO

Dysbiosis is recognized as a new cardiovascular disease (CVD) risk factor in hemodialysis (HD) patients because it is linked to increased generation in the gut of uremic toxins such as trimethylamine N-Oxide (TMAO) from dietary precursors (choline, betaine, or L-carnitine). Nutritional strategies have been proposed to modulate the gut microbiota and reduce the production of these toxins. This study aimed to evaluate the effect of amylose-resistant starch (RS) supplementation on TMAO plasma levels in HD patients.We conducted a randomized, double-blind, placebo-controlled trial (NCT02706808) with patients undergoing HD enrolled in a previous pilot study. The participants were allocated to RS or placebo groups to receive 16 g/d of RS or placebo for 4 weeks. Plasma TMAO, choline, and betaine levels were measured with LC-MS/MS. Fecal microbiome composition was evaluated by 16S ribosomal RNA sequencing, followed by a search for TMA-associated taxa. Anthropometric, routine biochemical parameters, and food intake were evaluated.Twenty-five participants finished the study, 13 in the RS group, and 12 in the placebo group. RS supplementation did not reduce TMAO plasma levels. Moreover, no significant alterations were observed in choline, betaine, anthropometric, biochemical parameters, or food intake in both groups. Likewise, RS was not found to exert any influence on the proportion of potential TMA-producing bacterial taxa in fecal matter.RS supplementation did not influence plasma TMAO, choline, betaine, or fecal taxa potentially linked to TMAO. Thus, RS does not seem to modify the TMA-associated bacterial taxa, precursors of TMAO.Supplemental data for this article is available online at https://doi.org/10.1080/07315724.2021.1967814 .


Assuntos
Betaína , Amido Resistente , Humanos , Projetos Piloto , Cromatografia Líquida , Espectrometria de Massas em Tandem , Colina , Diálise Renal/efeitos adversos , Bactérias , Suplementos Nutricionais
8.
Sci Total Environ ; 806(Pt 3): 150727, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610403

RESUMO

The rupture of the Fundão dam (Mariana, MG, southeast Brazil) released a huge flood of mine tailings to Doce river basin and its adjacent coastal area, in November 2015. This catastrophic event exposed aquatic communities to metal contamination related to mine tailings, but its biological effects are still poorly understood. This study investigates how biochemical response related to metal exposure vary between locations and seasons during the years of 2018-2020, in planktonic communities (micro and mesoplankton). Marine microplankton collected in sectors in front and south of the Doce river mouth presented the highest lipid peroxidation (LPO) and induction of metallothioneins (MT). Mesoplankton collected in sectors in front and north of the Doce river mouth presented highest LPO, while MT in this size class did not respond to a clear spatial pattern. Our results showed that metals affected biomarkers in a non-linear pattern and highlighted the complex relationship between metals, biochemical parameters, and seasonality. The variation in biochemical biomarkers indicates physiological stress related to metals, once sectors contaminated by metals, especially Fe, Mn and Cd, presented stronger biochemical responses. Comparison of metal levels with bioaccumulation data collected before the impact indicates Fe, Cd, Cr and Cu more than 2-fold higher after disaster in sectors closer to the river. Literature showed that these sectors present zooplanktonic assemblages with lower biomass and biodiversity, suggesting that the opportunistic species that thrives in the area are also under biochemical stress, but possibly relies on repair or defense mechanisms. The physiological stress detected by this study is possibly related to the mine tailings, considering the metals that stood out and the proximity with the Doce river mouth. This suggests that the impacts related to the failure of Fundão dam are still affecting the marine planktonic community even three to four years after the environmental disaster.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Bioacumulação , Brasil , Plâncton , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Microbiologyopen ; 9(12): e1141, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33226191

RESUMO

Bacterial communities of two critically endangered rays from the South Atlantic, the butterfly ray (Gymnura altavela) and the groovebelly ray (Dasyatis hypostigma), were described using 16S rRNA gene metabarcoding. The study characterized the bacterial communities associated with (i) G. altavela in natural (in situ) and aquarium (ex situ) settings, (ii) skin and stinger of G. altavela, and D. hypostigma in aquaria, and (iii) newborns and adults of D. hypostigma. The results revealed potentially antibiotic-producing bacterial groups on the skin of rays from the natural environment, and some taxa with the potential to benefit ray health, mainly in rays from the natural environment, as well as possible pathogens to other animals, including fish and humans. Differences were observed between the G. altavela and D. hypostigma bacteria composition, as well as between the skin and stinger bacterial composition. The bacterial community associated with D. hypostigma changed with the age of the ray. The aquarium environment severely impacted the G. altavela bacteria composition, which changed from a complex bacterial community to one dominated almost exclusively by two taxa, Oceanimonas sp. and Sediminibacterium sp. on the skin and stinger, respectively.


Assuntos
Bactérias/classificação , Bactérias/genética , Microbiota/genética , Rajidae/microbiologia , Pele/microbiologia , Animais , Oceano Atlântico , Bactérias/isolamento & purificação , Brasil , Código de Barras de DNA Taxonômico , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Rajidae/classificação
10.
Oral Maxillofac Surg ; 24(4): 387-401, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32621033

RESUMO

PURPOSE: Dysbiosis has been identified in oral squamous cell carcinoma (OSCC). The aim of this study was to carry out a systematic review of an electronic research that was carried out on articles published between January 2008 and September 2018. METHODS: Eight studies were selected after applying the inclusion and exclusion criteria. RESULTS: All articles targeted the hypervariable regions of the 16S rRNA gene. At the phylum level, it was found reduction of Bacteroidetes (2/8 studies) and increase of Firmicutes (2/8 studies). At the genus level, Rothia increased (1/8 studies) and decreased (2/8 studies) in tumor samples, and Streptococcus also was found increased (3/8 studies) and reduced (3/8 studies). Fusobacterium only increased in OSCC samples (3/8 studies). At species level, an increase in F. nucleatum subsp. polymorphum was more associated to OSCC (2/8 studies) than with controls, as was P. aeruginosa (3/8 studies). CONCLUSION: In summary, the results corroborated dysbiosis in OSCC patients, with enrichment of microbial taxa that are associated with inflammation and production of acetaldehyde. However, variations of study design and sample size were observed among the studies, as well as a shortage of more detailed analyses of possible correlations between risk habits and OSCC. This lack of more detailed analysis may be the cause of the inconsistencies in regard of the alterations reported for certain genera and species. In conclusion, there is an association between OSCC and oral microbiota dysbiosis, but its role in oral carcinogenesis needs to be clarified in more detail.


Assuntos
Carcinoma de Células Escamosas , Microbiota , Neoplasias Bucais , Carcinoma de Células Escamosas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microbiota/genética , Neoplasias Bucais/genética , RNA Ribossômico 16S/genética
11.
Antonie Van Leeuwenhoek ; 96(3): 343-54, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19468855

RESUMO

An analysis of the effect of an oil spill on mangrove sediments was carried out by contamination of mesocosms derived from two different mangroves, one with a history of contamination and one pristine. The association between N(2) fixers and hydrocarbon degradation was assessed using quantitative PCR (qPCR) for the genes rrs and nifH, nifH clone library sequencing and total petroleum hydrocarbon (TPH) quantification using gas chromatography. TPH showed that the microbial communities of both mangroves were able to degrade the hydrocarbons added; however, whereas the majority of oil added to the mesocosm derived from the polluted mangrove was degraded in the 75 days of the experiment, there was only partially degradation in the mesocosm derived from the pristine mangrove. qPCR showed that the addition of oil led to an increase in rrs gene copy numbers in both mesocosms, having almost no effect on the nifH copy numbers in the pristine mangrove. Sequencing of nifH clones indicated that the changes promoted by the oil in the polluted mangrove were greater than those observed in the pristine mesocosm. The main effect observed in the polluted mesocosm was the selection of a single phylotype which is probably adapted to the presence of petroleum. These results, together with previous reports, give hints about the relationship between N(2) fixation and hydrocarbon degradation in natural ecosystems.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Dados de Sequência Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Petróleo/metabolismo , Filogenia
12.
J Microbiol ; 49(4): 535-43, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21887634

RESUMO

Most oil from oceanic spills converges on coastal ecosystems, such as mangrove forests, which are threatened with worldwide disappearance. Particular bacteria that inhabit the rhizosphere of local plant species can stimulate plant development through various mechanisms; it would be advantageous if these would also be capable of degrading oil. Such bacteria may be important in the preservation or recuperation of mangrove forests impacted by oil spills. This study aimed to compare the bacterial structure, isolate and evaluate bacteria able to degrade oil and stimulate plant growth, from the rhizospheres of three mangrove plant species. These features are particularly important taking into account recent policies for mangrove bioreme-diation, implying that oil degradation as well as plant maintenance and health are key targets. Fifty-seven morphotypes were isolated from the mangrove rhizospheres on Bushneil-Haas (BH) medium supplemented with oil as the sole carbon source and tested for plant growth promotion. Of this strains, 60% potentially fixed nitrogen, 16% showed antimicrobial activity, 84% produced siderophores, 51% had the capacity to solubilize phosphate, and 33% produced the indole acetic acid hormone. Using gas chromatography, we evaluated the oil-degrading potential of ten selected strains that had different morphologies and showed Plant Growth Promoting Rhizobacteria (PGPR) features. The ten tested strains showed a promising degradation profile for at least one compound present in the oil. Among degrader strains, 46% had promising PGPR potential, having at least three of the above capacities. These strains might be used as a consortium, allowing the concomitant degradation of oil and stimulation of mangrove plant survival and maintenance.


Assuntos
Bactérias/metabolismo , Petróleo/metabolismo , Rhizophoraceae/microbiologia , Rizosfera , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Ecossistema , Genes Bacterianos , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rhizophoraceae/crescimento & desenvolvimento , Microbiologia do Solo
13.
PLoS One ; 6(3): e16943, 2011 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-21399677

RESUMO

BACKGROUND: Mangroves are transitional coastal ecosystems in tropical and sub-tropical regions and represent biologically important and productive ecosystems. Despite their great ecological and economic importance, mangroves are often situated in areas of high anthropogenic influence, being exposed to pollutants, such as those released by oil spills. METHODOLOGY/PRINCIPAL FINDINGS: A microcosm experiment was conducted, which simulated an oil spill in previously pristine mangrove sediment. The effect of the oil spill on the extant microbial community was studied using direct pyrosequencing. Extensive bacterial diversity was observed in the pristine mangrove sediment, even after oil contamination. The number of different OTUs only detected in contaminated samples was significantly higher than the number of OTUs only detected in non-contaminated samples. The phylum Proteobacteria, in particular the classes Gammaproteobacteria and Deltaproteobacteria, were prevalent before and after the simulated oil spill. On the other hand, the order Chromatiales and the genus Haliea decreased upon exposure to 2 and 5% oil, these are proposed as sensitive indicators of oil contamination. Three other genera, Marinobacterium, Marinobacter and Cycloclasticus increased their prevalence when confronted with oil. These groups are possible targets for the biomonitoring of the impact of oil in mangrove settings. CONCLUSIONS/SIGNIFICANCE: We suggest the use of sequences of the selected genera as proxies for oil pollution, using qPCR assessments. The quantification of these genera in distinct mangrove systems in relation to the local oil levels would permit the evaluation of the level of perturbance of mangroves, being useful in field monitoring. Considering the importance of mangroves to many other environments and the susceptibility of such areas to oil spills this manuscript will be of broad interest.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/genética , Biodiversidade , Poluição Ambiental/efeitos adversos , Óleos/efeitos adversos , Rhizophoraceae/microbiologia , Análise de Sequência de DNA/métodos , Temperatura , Bactérias/isolamento & purificação , Poluição Ambiental/análise , Hidrocarbonetos/análise , Dados de Sequência Molecular , Óleos/análise , Petróleo/análise , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA