Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nitric Oxide ; 147: 26-41, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614230

RESUMO

Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [RuII(L)(NO2)(tpy)]PF6 where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.NHq-R (R = H or COOH) in the HSA/DNA interaction as well as antiviral activity. The interactions between HSA and new nitro complexes [RuII(L)(NO2)(tpy)]+ were evaluated. The Ka values for the HSA-[RuII(bdq)(NO2)(tpy)]+ is 10 times bigger than HSA-[RuII(bd)(NO2)(tpy)]+. The sites of interaction between HSA and the complexes via synchronous fluorescence suppression indicate that the [RuII(bdq)(NO2)(tpy)]+ is found close to the Trp-241 residue, while the [RuII(bd)(NO2)(tpy)]+ complex is close to Tyr residues. The interaction with fish sperm fs-DNA using direct spectrophotometric titration (Kb) and ethidium bromide replacement (KSV and Kapp) showed weak interaction in the system fs-DNA-[RuII(bdq)(NO)(tpy)]+. Furthermore, fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+ system showed higher intercalation constant. Circular dichroism spectra for fs-DNA-[RuII(bd)(NO2)(tpy)]+ and fs-DNA-[RuII(bd)(NO)(tpy)]3+, suggest semi-intercalative accompanied by major groove binding interaction modes. The [RuII(bd)(NO2)(tpy)]+ and [RuII(bd)(NO)(tpy)]3+ inhibit replication of Zika and Chikungunya viruses based in the nitric oxide release under S-nitrosylation reaction with cysteine viral.


Assuntos
Antivirais , DNA , Rutênio , Humanos , DNA/metabolismo , DNA/química , Rutênio/química , Rutênio/farmacologia , Antivirais/farmacologia , Antivirais/química , Antivirais/metabolismo , Ligantes , Animais , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Piridinas/química , Piridinas/farmacologia , Iminas/química , Iminas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo
2.
J Biol Inorg Chem ; 28(1): 101-115, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36484824

RESUMO

Chikungunya virus (CHIKV) is the causative agent of chikungunya fever, a disease that can result in disability. Until now, there is no antiviral treatment against CHIKV, demonstrating that there is a need for development of new drugs. Studies have shown that thiosemicarbazones and their metal complexes possess biological activities, and their synthesis is simple, clean, versatile, and results in high yields. Here, we evaluated the mechanism of action (MOA) of a cobalt(III) thiosemicarbazone complex named [CoIII(L1)2]Cl based on its in vitro potent antiviral activity against CHIKV previously evaluated (80% of inhibition on replication). Furthermore, the complex has no toxicity in healthy cells, as confirmed by infecting BHK-21 cells with CHIKV-nanoluciferase in the presence of the compound, showing that [CoIII(L1)2]Cl inhibited CHIKV infection with the selective index of 3.26. [CoIII(L1)2]Cl presented a post-entry effect on viral replication, emphasized by the strong interaction of [CoIII(L1)2]Cl with CHIKV non-structural protein 4 (nsP4) in the microscale thermophoresis assay, suggesting a potential mode of action of this compound against CHIKV. Moreover, in silico analyses by molecular docking demonstrated potential interaction of [CoIII(L1)2]Cl with nsP4 through hydrogen bonds, hydrophobic and electrostatic interactions. The evaluation of ADME-Tox properties showed that [CoIII(L1)2]Cl presents appropriate lipophilicity, good human intestinal absorption, and has no toxicological effect as irritant, mutagenic, reproductive, and tumorigenic side effects.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/metabolismo , Vírus Chikungunya/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/farmacologia , Proteínas não Estruturais Virais/uso terapêutico , Cobalto/farmacologia , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/uso terapêutico
3.
Arch Microbiol ; 205(4): 106, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36881172

RESUMO

Mayaro virus (MAYV), first isolated in 1954 in Trinidad and Tobago islands, is the causative agent of Mayaro fever, a disease characterized by fever, rashes, headaches, myalgia, and arthralgia. The infection can progress to a chronic condition in over 50% of cases, with persistent arthralgia, which can lead to the disability of the infected individuals. MAYV is mainly transmitted through the bite of the female Haemagogus spp. mosquito genus. However, studies demonstrate that Aedes aegypti is also a vector, contributing to the spread of MAYV beyond endemic areas, given the vast geographical distribution of the mosquito. Besides, the similarity of antigenic sites with other Alphavirus complicates the diagnoses of MAYV, contributing to underreporting of the disease. Nowadays, there are no antiviral drugs available to treat infected patients, being the clinical management based on analgesics and non-steroidal anti-inflammatory drugs. In this context, this review aims to summarize compounds that have demonstrated antiviral activity against MAYV in vitro, as well as discuss the potentiality of viral proteins as targets for the development of antiviral drugs against MAYV. Finally, through rationalization of the data presented herein, we wish to encourage further research encompassing these compounds as potential anti-MAYV drug candidates.


Assuntos
Aedes , Alphavirus , Animais , Humanos , Feminino , Mosquitos Vetores , Antivirais/farmacologia , Antivirais/uso terapêutico , Artralgia
4.
Arch Microbiol ; 205(10): 334, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37730918

RESUMO

Enteroviruses are pathogens responsible for several diseases, being enterovirus A71 (EVA71) the second leading cause of hand, foot, and mouth disease (HFMD), especially in Asia-Pacific countries. HFMD is mostly common in infants and children, with mild symptoms. However, the disease can result in severe nervous system disorders in children as well as in immunosuppressed adults. The virus is highly contagious, and its transmission occurs via fecal-oral, oropharyngeal secretions, and fomites. The EVA71 burdens the healthy systems and economies around the world, however, up to date, there is no antiviral approved to treat infected individuals and the existent vaccines are not available or approved to be used worldwide. In this context, an extensive literature research was conducted to describe and summarize the recent advances in natural and/or synthetic compounds with antiviral activity against EVA71. The summarized data presented here might simply encourage the future studies in EVA71 antiviral development, by encouraging further research encompassing these compounds or even the application of the techniques and technologies to improve or produce new antiviral molecules.


Assuntos
Enterovirus , Nanopartículas , Adulto , Criança , Lactente , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Fezes , Hospedeiro Imunocomprometido
5.
Viruses ; 16(5)2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38793690

RESUMO

The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized the phylogenetic relationship among virus strains. A phylogenetic analysis showed that sequences were grouped according to the genotypes L, D, and N. Genotype D sequences were closely related to sequences collected in adjacent years and from their respective countries, suggesting that isolates may have originated from circulating lineages. The coalescent analysis demonstrated similar results, indicating the continuous circulation of the virus between countries as well. An unidentified sequence from the USA was grouped with genotype D, suggesting the insertion of this genotype in the country. Furthermore, the recombination analysis detected homologous and three heterologous hybrids which presented an insertion into the nsP3 protein. Amino acid substitutions among sequences indicated selective pressure sites, suggesting viral adaptability. This also impacted the binding affinity between the E1-E2 protein complex and the Mxra8 receptor, associated with MAYV entry into human cells. These results provide information for a better understanding of genotypes circulating in the Americas.


Assuntos
Evolução Molecular , Variação Genética , Genoma Viral , Genótipo , Filogenia , América/epidemiologia , Humanos , Alphavirus/genética , Alphavirus/classificação , Alphavirus/isolamento & purificação , Animais , Recombinação Genética , Infecções por Alphavirus/virologia , Infecções por Alphavirus/epidemiologia
6.
J Biomol Struct Dyn ; : 1-19, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817533

RESUMO

The genus Mammarenavirus belonging to the family Arenaviridae encompasses pathogenic viral species capable of triggering severe diseases in humans, causing concern for the health system due to the high fatality rate associated with them. Currently, there is a dearth of specific therapies against pathogens of the genus. Natural products isolated from plants have impacted the development of drugs against several diseases. The Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE) database offers several natural compounds with antimicrobial activities that can be used in the development of new antiviral drugs. In this context, here we modeled the arenavirus L protein, multifunctional machinery essential for the viral replicative cycle, making this enzyme a potential candidate for targeting the development of antivirals against genus pathogens. Using the modeled L protein, a virtual screening was performed, which suggested eleven molecules from the NuBBE database that binds to the active site of the L protein, which was promising in the in silico predictions of absorption and toxicity analysis. The NuBBE 1642 molecule proved to be the best candidate for four of the five species evaluated, acting as a possible broad-spectrum molecule. Additionally, our results showed that the L protein is highly conserved among species of the genus, as well as presenting close phylogenetic relationships between many of the species studied, strengthening its candidacy as a therapeutic target. The data presented here demonstrate that some NuBBE molecules are potential ligands for the L protein of arenaviruses, which may help to contain possible outbreaks.Communicated by Ramaswamy H. Sarma.

7.
iScience ; 26(1): 105702, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36471873

RESUMO

The emergence and rapid spread outside of monkeypox virus (MPXV) to non-endemic areas has led to another global health emergency in the midst of the COVID-19 pandemic. The scientific community has sought to rapidly develop in vitro and in vivo models that could be applied in research with MPXV. In vitro models include two-dimensional (2D) cultures of immortalized cell lines or primary cells and three-dimensional (3D) cultures. In vitro models are considered cost-effective and can be done in highly controlled conditions; however, they do not always resemble physiological conditions. In this way, several in vivo models are being characterized to meet the growing demand for new studies related to MPXV. In this review, we summarize the main MPXV models that have already been developed and discuss how they can contribute to advance the understanding of its pathogenesis, replication, and transmission, as well as identifying antivirals to treat infected patients.

8.
Int J Biol Macromol ; 241: 124519, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37085072

RESUMO

Enterovirus A71 (EVA71) belongs to the Picornaviridae family and is the main etiological agent of hand, foot, and mouth disease (HFMD). There is no approved antiviral against EVA71, and therefore the search for novel anti-EVA71 therapeutics is essential. In this context, the antiviral activity of proteins isolated from snake venoms has been reported against a range of viruses. Here, the proteins CM10 and CM14 isolated from Bothrops moojeni, and Crotamin and PLA2CB isolated from Crotalus durissus terrificus were investigated for their antiviral activity against EVA71 infection. CM14 and Crotamin possessed a selective index (SI) of 170.8 and 120.4, respectively, while CM10 and PLA2CB had an SI of 67.4 and 12.5, respectively. CM14 inhibited all steps of viral replication (protective effect: 76 %; virucidal: 99 %; and post-entry: 99 %). Similarly, Crotamin inhibited up to 99 % of three steps. In contrast, CM10 and PLA2CB impaired one or two steps of EVA71 replication, respectively. Further dose-response assays using increasing titres of EVA71 were performed and CM14 and Crotamin retained functionality with high concentrations of EVA71 (up to 1000 TCID50). These data demonstrate that proteins isolated from snake venom are potent inhibitors of EVA71 and could be used as scaffolds for future development of novel antivirals.


Assuntos
Venenos de Crotalídeos , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Brasil , Proteínas , Antivirais/farmacologia , Antígenos Virais , Serpentes , Fosfolipases A2
9.
Int J Biol Macromol ; 227: 630-640, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529220

RESUMO

Zika virus is the etiologic agent of Zika fever, and has been previously associated with cases of microcephaly, drawing the attention of the health authorities worldwide. However, no vaccine or antiviral are currently available. Phospholipases A2 (PLA2) isolated from snake venoms have demonstrated antiviral activity against several viruses. Here we demonstrated the anti-ZIKV activity of bothropstoxins-I and II (BthTX-I and II) isolated from Bothrops jararacussu venom. Vero E6 cells were infected with ZIKVPE243 in the presence of compounds for 72 h, when virus titers were evaluated. BthTX-I and II presented strong dose-dependent inhibition of ZIKV, with a SI of 149.1 and 1.44 × 105, respectively. These toxins mainly inhibited the early stages of the replicative cycle, such as during the entry of ZIKV into host cells, as shown by the potent virucidal effect, suggesting the action of these toxins on the virus particles. Moreover, BthTX-I and II presented significant activity towards post-entry stages of the ZIKV replicative cycle. Molecular docking analyses showed that BthTX-I and II potentially interact with DII and DIII domains from ZIKV Envelope protein. Our findings show that these PLA2s could be used as useful templates for the development of future antiviral candidate drugs against Zika fever.


Assuntos
Bothrops , Venenos de Crotalídeos , Infecção por Zika virus , Zika virus , Animais , Humanos , Antivirais/farmacologia , Bothrops/metabolismo , Infecção por Zika virus/tratamento farmacológico , Simulação de Acoplamento Molecular , Venenos de Crotalídeos/metabolismo , Anticorpos
10.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37895860

RESUMO

Chikungunya virus (CHIKV) belongs to the Alphavirus genus and is responsible for significant outbreaks worldwide. Currently, there is no approved antiviral therapy against CHIKV. Bioactive peptides have great potential for new drug development. Here, we evaluated the antiviral activity of the synthetic peptide GA-Hecate and its analogs PSSct1905 and PSSct1910 against CHIKV infection. Initial screening showed that all three peptides inhibited the CHIKV replication cycle in baby hamster kidney fibroblast cells (BHK-21) and human hepatocarcinoma epithelial cells (Huh-7). GA-Hecate and its analog PSSct1905 were the most active, demonstrating suppression of viral infection by more than 91%. The analog PSSct1905 exhibited a protective effect in cells against CHIKV infection. We also observed that the analogs PSSct1905 and PSSct1910 affected CHIKV entry into both cell lines, inhibiting viral attachment and internalization. Finally, all tested compounds presented antiviral activity on the post-entry steps of CHIKV infection in all cells evaluated. In conclusion, this study highlights the potential of the peptide GA-Hecate and its analogs as novel anti-CHIKV compounds targeting different stages of the viral replication cycle, warranting the development of GA-Hecate-based compounds with broad antiviral activity.

11.
Virus Res ; 324: 199029, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565816

RESUMO

The Chikungunya virus (CHIKV) causes Chikungunya fever, a disease characterized by symptoms such as arthralgia/polyarthralgia. Currently, there are no antivirals approved against CHIKV, emphasizing the need to develop novel therapies. The imidazonaphthyridine compound (RO8191), an interferon-α (IFN-α) agonist, was reported as a potent inhibitor of HCV. Here RO8191 was investigated for its potential to inhibit CHIKV replication in vitro. RO8191 inhibited CHIKV infection in BHK-21 and Vero-E6 cells with a selectivity index (SI) of 12.3 and 37.3, respectively. Additionally, RO8191 was capable to protect cells against CHIKV infection, inhibit entry by virucidal activity, and strongly impair post-entry steps of viral replication. An effect of RO8191 on CHIKV replication was demonstrated in BHK-21 through type-1 IFN production mechanism and in Vero-E6 cells which has a defective type-1 IFN production, also suggesting a type-1 IFN independent mode of action. Molecular docking calculations demonstrated interactions of RO8191 with the CHIKV E proteins, corroborated by the ATR-FTIR assay, and with non-structural proteins, supported by the CHIKV-subgenomic replicon cells assay.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Interferon Tipo I , Animais , Chlorocebus aethiops , Humanos , Febre de Chikungunya/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Simulação de Acoplamento Molecular , Replicação Viral , Células Vero , Interferon Tipo I/farmacologia
12.
Viruses ; 15(5)2023 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-37243254

RESUMO

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are important disease-causing agents worldwide. Currently, there are no antiviral drugs or vaccines approved to treat these viruses. However, peptides have shown great potential for new drug development. A recent study described (p-BthTX-I)2K [(KKYRYHLKPF)2K], a peptide derived from the Bothropstoxin-I toxin in the venom of the Bothrops jararacussu snake, showed antiviral activity against SARS-CoV-2. In this study, we assessed the activity of this peptide against CHIKV and ZIKV and its antiviral action in the different stages of the viral replication cycle in vitro. We observed that (p-BthTX-I)2K impaired CHIKV infection by interfering with the early steps of the viral replication cycle, reducing CHIKV entry into BHK-21 cells specifically by reducing both the attachment and internalization steps. (p-BthTX-I)2K also inhibited the ZIKV replicative cycle in Vero cells. The peptide protected the cells against ZIKV infection and decreased the levels of the viral RNA and the NS3 protein of this virus at viral post-entry steps. In conclusion, this study highlights the potential of the (p-BthTX-I)2K peptide to be a novel broad-spectrum antiviral candidate that targets different steps of the replication cycle of both CHIKV and ZIKV.


Assuntos
COVID-19 , Febre de Chikungunya , Vírus Chikungunya , Vírus , Infecção por Zika virus , Zika virus , Animais , Chlorocebus aethiops , Humanos , Infecção por Zika virus/tratamento farmacológico , Zika virus/genética , Células Vero , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral , SARS-CoV-2 , Vírus Chikungunya/genética , Peptídeos/farmacologia , Peptídeos/uso terapêutico
13.
Pharmacol Rep ; 74(4): 752-758, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882766

RESUMO

BACKGROUND: Chikungunya fever is an endemic disease caused by the Chikungunya virus (CHIKV). To date there is no antiviral treatment against this infection or licensed vaccine to prevent it. Our study aims to evaluate whether (-)-cassine (1) and (-)-spectaline (2), the main alkaloids of Senna spectabilis, display anti-CHIKV activity. Both compounds have been described to be biologically active against neglected tropical diseases, including malaria, leishmaniasis, and schistosomiasis, which emphasizes that these molecules could be repurposed for chikungunya fever treatment. METHODS: The structures of the isolated compounds 1 and 2 were identified by NMR and HRESIMS analyses, and their antiviral activity against CHIKV was assessed by a dose-response assay employing BHK-21 cells and CHIKV-nanoluc, a recombinant virus carrying the nanoluciferase gene reporter. RESULTS: Compound 1 presented CC50 of 126.5 µM and EC50 of 14.9 µM, while compound 2 presented CC50 of 91.9 µM and EC50 of 8.3 µM. The calculated selectivity index (SI) was 8.5 for 1 and 11.3 for 2. CONCLUSION: The data presented herein show that compounds 1 and 2 have potential for being repurposed as anti-CHIKV drug. Our promising in vitro results encourage further in vitro and in vivo assays. This is the first description of the antiviral activity of compounds 1 and 2 against CHIKV infection, which can impact the development of antiviral drug candidates against chikungunya fever, which sometimes can be debilitating.


Assuntos
Alcaloides , Febre de Chikungunya , Vírus Chikungunya , Alcaloides/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Flores/química , Luciferases , Piperidinas/farmacologia
14.
Acta Trop ; 227: 106300, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34979144

RESUMO

Most of the patients infected with Chikungunya virus (CHIKV) develop chronic manifestations characterized by pain and deformity in joints, impacting their quality of life. The aminoadamantanes, in their turn, have been exploited due to their biological activities, with amantadine and memantine recently described with anti-CHIKV activities. Here we evaluated the antiviral activity of rimantadine hydrochloride (rtdH), a well-known antiviral agent against influenza A, its platinum complex (Pt-rtd), and the precursor cis-[PtCl2(dmso)2], against CHIKV infection in vitro. The rtdH demonstrated significant antiviral activity in all stages of CHIKV replication (29% in pre-treatment; 57% in early stages of infection; 60% in post-entry stages). The Pt-rtd complex protected the cells against infection in 92%, inhibited 100% of viral entry, mainly by a virucidal effect, and impaired 60% of post-entry stages. Alternatively, cis-[PtCl2(dmso)2] impaired viral entry in 100% and post-entry steps in 60%, but had no effect in protecting cells when administered prior to CHIKV infection. Collectively, the obtained data demonstrated that rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, with the strongest effect observed to Pt-rtd complex, which reduced up to 100% of CHIKV infection. Moreover, molecular docking analysis and infrared spectroscopy data (ATR-FTIR) suggest an interaction of Pt-rtd with CHIKV glycoproteins, potentially related to the mechanism of inhibition of viral entry by Pt-rtd. Through a migration retardation assay, it was also shown that Pt-rtd and cis-[PtCl2(dmso)2] interacted with the dsRNA in 87% and 100%, respectively. The obtained results highlight the repurposing potential of rtdH as an anti-CHIKV drug, as well as the synthesis of promising platinum(II) metallodrugs with potential application for the treatment of CHIKV infections. Importance Chikungunya fever is a disease that can result in persistent symptoms due to the chronic infection process. Infected patients can develop physical disability, resulting and high costs to the health system and significant impacts on the quality of life of affected individuals. Additionally, there are no licensed vaccines or antivirals against the Chikungunya virus (CHIKV) and the virus is easily transmitted due to the abundance of viable vectors in epidemic regions. In this context, our study highlights the repurposing potential of the commercial drug rimantadine hydrochloride (rtdH) as an antiviral agent for the treatment of CHIKV infections. Moreover, our data demonstrated that a platinum(II)-rimantadine metallodrug (Pt-rtd) poses as a potent anti-CHIKV molecule with potential application for the treatment of Chikungunya fever. Altogether, rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, reducing up to 100% of CHIKV infection in vitro.


Assuntos
Febre de Chikungunya , Rimantadina , Linhagem Celular , Febre de Chikungunya/tratamento farmacológico , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Platina/farmacologia , Platina/uso terapêutico , Qualidade de Vida , Rimantadina/farmacologia , Rimantadina/uso terapêutico , Replicação Viral
15.
J Biomol Struct Dyn ; 40(13): 5917-5931, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33478342

RESUMO

SARS-CoV-2 is the etiological agent of COVID-19, which represents a global health emergency that was rapidly declared a pandemic by the World Health Organization. Currently, there is a dearth of effective targeted therapies against viruses. Natural products isolated from traditional herbal plants have had a huge impact on drug development aimed at various diseases. Lapachol is a 1,4- naphthoquinone compound that has been demonstrated to have therapeutic effects against several diseases. SARS-CoV-2 non-structural proteins (nsps) play an important role in the viral replication cycle. Nsp9 seems to play a key role in transcription of the RNA genome of SARS-CoV-2. Virtual screening by docking and molecular dynamics suggests that lapachol derivatives can interact with Nsp9 from SARS-CoV-2. Complexes of lapachol derivatives V, VI, VIII, IX, and XI with the Nsp9 RNA binding site were subjected to molecular dynamics assays, to assess the stability of the complexes via RMSD. All complexes were stable over the course of 100 ns dynamics assays. Analyses of the hydrogen bonds in the complexes showed that lapachol derivatives VI and IX demonstrated strongest binding, with a stable or increasing number of hydrogen bonds over time. Our results demonstrate that Nsp9 from SARS-CoV-2 could be an important target in prospecting for ligands with antiviral potential. In addition, we showed that lapachol derivatives are potential ligands for SARS-CoV-2 Nsp9.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Naftoquinonas , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naftoquinonas/farmacologia , RNA , SARS-CoV-2 , Proteínas Virais/química
16.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36558945

RESUMO

Although the past epidemic of Zika virus (ZIKV) resulted in severe neurological consequences for infected infants and adults, there are still no approved drugs to treat ZIKV infection. In this study, we applied computational approaches to screen an in-house database of 77 natural and semi-synthetic compounds against ZIKV NS5 RNA-dependent RNA-polymerase (NS5 RdRp), an essential protein for viral RNA elongation during the replication process. For this purpose, we integrated computational approaches such as binding-site conservation, chemical space analysis and molecular docking. As a result, we prioritized nine virtual hits for experimental evaluation. Enzymatic assays confirmed that pedalitin and quercetin inhibited ZIKV NS5 RdRp with IC50 values of 4.1 and 0.5 µM, respectively. Moreover, pedalitin also displayed antiviral activity on ZIKV infection with an EC50 of 19.28 µM cell-based assays, with low toxicity in Vero cells (CC50 = 83.66 µM) and selectivity index of 4.34. These results demonstrate the potential of the natural compounds pedalitin and quercetin as candidates for structural optimization studies towards the discovery of new anti-ZIKV drug candidates.

17.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34730486

RESUMO

Since the beginning of the SARS-CoV-2 spread in Brazil, few studies have been published analysing the variability of viral genome. Herein, we described the dynamic of SARS-CoV-2 strains circulating in Brazil from May to September 2020, to better understand viral changes that may affect the ongoing pandemic. Our data demonstrate that some of the mutations identified are currently observed in variants of interest and variants of concern, and emphasize the importance of studying previous periods in order to comprehend the emergence of new variants. From 720 SARS-CoV-2 genome sequences, we found few sites under positive selection pressure, such as the D614G (98.5 %) in the spike, that has replaced the old variant; the V1167F in the spike (41 %), identified in the P.2 variant that emerged from Brazil during the period of analysis; and I292T (39 %) in the N protein. There were a few alterations in the UTRs, which was expected, however, our data suggest that the emergence of new variants was not influenced by mutations in UTR regions, since it maintained its conformational structure in most analysed sequences. In phylogenetic analysis, the spread of SARS-CoV-2 from the large urban centres to the countryside during these months could be explained by the flexibilization of social isolation measures and also could be associated with possible new waves of infection. These results allow a better understanding of SARS-CoV-2 strains that have circulated in Brazil, and thus, with relevant infomation, provide the potential viral changes that may have affected and/or contributed to the current and future scenario of the COVID-19 pandemic.


Assuntos
COVID-19/virologia , Genoma Viral , Mutação , SARS-CoV-2/genética , Regiões 5' não Traduzidas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Brasil/epidemiologia , COVID-19/epidemiologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Seleção Genética , Adulto Jovem
18.
Virus Res ; 299: 198388, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33887282

RESUMO

The 2015/16 Zika virus (ZIKV) epidemic led to almost 1 million confirmed cases in 84 countries and was associated to the development of congenital microcephaly and Guillain-Barré syndrome. More recently, a ZIKV African lineage was identified in Brazil raising concerns about a future outbreak. The long-term consequences of viral infection emphasizes the need for the development of effective anti-ZIKV drugs. In this study, we developed and characterized a ZIKV replicon cell line for the screening of viral replication inhibitors. The replicon system was developed by engineering the IRES-Neo cassette into the 3' UTR terminus of the ZIKV Rluc DNA construct. After in vitro transcription, replicon RNA was used to transfect BHK-21 cells, that were selected with G418, thus generating the BHK-21-RepZIKV_IRES-Neo cell line. Through this replicon-based cell system, we identified two molecules with potent anti-ZIKV activities, an imidazonaphthyridine and a riminophenazine, both from the MMV/DNDi Pandemic Response Box library of 400 drug-like compounds. The imidazonaphthyridine, known as RO8191, showed remarkable selectivity against ZIKV, while the riminophenazine, the antibiotic Clofazimine, could act as a non-nucleoside analog inhibitor of viral RNA-dependent RNA polymerase (RdRp), as evidenced both in vitro and in silico. The data showed herein supports the use of replicon-based assays in high-throughput screening format as a biosafe and reliable tool for antiviral drug discovery.


Assuntos
Infecção por Zika virus , Zika virus , Antivirais/farmacologia , Antivirais/uso terapêutico , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Ensaios de Triagem em Larga Escala , Humanos , Replicon , Replicação Viral , Zika virus/fisiologia
19.
Sci Rep ; 11(1): 8717, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888774

RESUMO

Chikungunya virus (CHIKV) is the etiologic agent of Chikungunya fever, a globally spreading mosquito-borne disease. There is no approved antiviral or vaccine against CHIKV, highlighting an urgent need for novel therapies. In this context, snake venom proteins have demonstrated antiviral activity against several viruses, including arboviruses which are relevant to public health. In particular, the phospholipase A2CB (PLA2CB), a protein isolated from the venom of Crotalus durissus terrificus was previously shown to possess anti-inflammatory, antiparasitic, antibacterial and antiviral activities. In this study, we investigated the multiple effects of PLA2CB on the CHIKV replicative cycle in BHK-21 cells using CHIKV-nanoluc, a marker virus carrying nanoluciferase reporter. The results demonstrated that PLA2CB possess a strong anti-CHIKV activity with a selectivity index of 128. We identified that PLA2CB treatment protected cells against CHIKV infection, strongly impairing virus entry by reducing adsorption and post-attachment stages. Moreover, PLA2CB presented a modest yet significant activity towards post-entry stages of CHIKV replicative cycle. Molecular docking calculations indicated that PLA2CB may interact with CHIKV glycoproteins, mainly with E1 through hydrophobic interactions. In addition, infrared spectroscopy measurements indicated interactions of PLA2CB and CHIKV glycoproteins, corroborating with data from in silico analyses. Collectively, this data demonstrated the multiple antiviral effects of PLA2CB on the CHIKV replicative cycle, and suggest that PLA2CB interacts with CHIKV glycoproteins and that this interaction blocks binding of CHIKV virions to the host cells.


Assuntos
Vírus Chikungunya/efeitos dos fármacos , Venenos de Crotalídeos/enzimologia , Glicoproteínas/metabolismo , Fosfolipases A2/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Linhagem Celular , Vírus Chikungunya/fisiologia , Cricetinae , Crotalus , Simulação de Acoplamento Molecular , Fosfolipases A2/isolamento & purificação , Fosfolipases A2/metabolismo , Ligação Proteica , Replicação Viral/efeitos dos fármacos
20.
Front Physiol ; 11: 587013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362575

RESUMO

Novel coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its impact on patients with comorbidities is clearly related to fatality cases, and diabetes has been linked to one of the most important causes of severity and mortality in SARS-CoV-2 infected patients. Substantial research progress has been made on COVID-19 therapeutics; however, effective treatments remain unsatisfactory. This unmet clinical need is robustly associated with the complexity of pathophysiological mechanisms described for COVID-19. Several key lung pathophysiological mechanisms promoted by SARS-CoV-2 have driven the response in normoglycemic and hyperglycemic subjects. There is sufficient evidence that glucose metabolism pathways in the lung are closely tied to bacterial proliferation, inflammation, oxidative stress, and pro-thrombotic responses, which lead to severe clinical outcomes. It is also likely that SARS-CoV-2 proliferation is affected by glucose metabolism of type I and type II cells. This review summarizes the current understanding of pathophysiology of SARS-CoV-2 in the lung of diabetic patients and highlights the changes in clinical outcomes of COVID-19 in normoglycemic and hyperglycemic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA