Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924220

RESUMO

Tropospheric ozone [O3] is a secondary air pollutant formed from the photochemical oxidation of volatile organic compounds in the presence of nitrogen oxides, and it is one of the most damaging air pollutants to crops. O3 entry into the plant generates reactive oxygen species leading to cellular damage and oxidative stress, leading to decreased primary production and yield. Increased O3 exposure has also been shown to have secondary impacts on plants by altering the incidence and response to plant pathogens. We used the Capsicum annum (pepper)-Xanthomonas perforans pathosystem to investigate the impact of elevated O3 (eO3) on plants with and without exposure to Xanthomonas, using a disease-susceptible and disease-resistant pepper cultivar. Gas exchange measurements revealed decreases in diurnal photosynthetic rate (A') and stomatal conductance ( g s ' $$ {g}_{\mathrm{s}}^{\prime } $$ ), and maximum rate of electron transport (Jmax) in the disease-resistant cultivar, but no decrease in the disease-susceptible cultivar in eO3, regardless of Xanthomonas presence. Maximum rates of carboxylation (Vc,max), midday A and gs rates at the middle canopy, and decreases in aboveground biomass were negatively affected by eO3 in both cultivars. We also observed a decrease in stomatal sluggishness as measured through the Ball-Berry-Woodrow model in all treatments in the disease-resistant cultivar. We hypothesize that the mechanism conferring disease resistance to Xanthomonas in pepper also renders the plant less tolerant to eO3 stress through changes in stomatal responsiveness. Findings from this study help expand our understanding of the trade-off of disease resistance with abiotic stresses imposed by future climate change.

2.
Plant Cell Environ ; 46(10): 2946-2963, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36585762

RESUMO

As sessile organisms, plants are constantly challenged by a dynamic growing environment. This includes fluctuations in temperature, water availability, light levels, and changes in atmospheric constituents such as carbon dioxide (CO2 ) and ozone (O3 ). In concert with changes in abiotic conditions, plants experience changes in biotic stress pressures, including plant pathogens and herbivores. Human-induced increases in atmospheric CO2 levels have led to alterations in plant growth environments that impact their productivity and nutritional quality. Additionally, it is predicted that climate change will alter the prevalence and virulence of plant pathogens, further challenging plant growth. A knowledge gap exists in the complex interplay between plant responses to biotic and abiotic stress conditions. Closing this gap is crucial for developing climate resilient crops in the future. Here, we briefly review the physiological responses of plants to elevated CO2 , temperature, tropospheric O3 , and drought conditions, as well as the interaction of these abiotic stress factors with plant pathogen pressure. Additionally, we describe the crosstalk and trade-offs involved in plant responses to both abiotic and biotic stress, and outline targets for future work to develop a more sustainable future food supply considering future climate change.


Assuntos
Dióxido de Carbono , Mudança Climática , Humanos , Desenvolvimento Vegetal , Estresse Fisiológico/fisiologia , Produtos Agrícolas
3.
Planta ; 255(4): 93, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35325309

RESUMO

MAIN CONCLUSION: By combining hyperspectral signatures of peanut and soybean, we predicted Vcmax and Jmax with 70 and 50% accuracy. The PLS was the model that better predicted these photosynthetic parameters. One proposed key strategy for increasing potential crop stability and yield centers on exploitation of genotypic variability in photosynthetic capacity through precise high-throughput phenotyping techniques. Photosynthetic parameters, such as the maximum rate of Rubisco catalyzed carboxylation (Vc,max) and maximum electron transport rate supporting RuBP regeneration (Jmax), have been identified as key targets for improvement. The primary techniques for measuring these physiological parameters are very time-consuming. However, these parameters could be estimated using rapid and non-destructive leaf spectroscopy techniques. This study compared four different advanced regression models (PLS, BR, ARDR, and LASSO) to estimate Vc,max and Jmax based on leaf reflectance spectra measured with an ASD FieldSpec4. Two leguminous species were tested under different controlled environmental conditions: (1) peanut under different water regimes at normal atmospheric conditions and (2) soybean under high [CO2] and high night temperature. Model sensitivities were assessed for each crop and treatment separately and in combination to identify strengths and weaknesses of each modeling approach. Regardless of regression model, robust predictions were achieved for Vc,max (R2 = 0.70) and Jmax (R2 = 0.50). Field spectroscopy shows promising results for estimating spatial and temporal variations in photosynthetic capacity based on leaf and canopy spectral properties.


Assuntos
Arachis , Glycine max , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Glycine max/metabolismo
4.
Physiol Plant ; 166(1): 88-104, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30381841

RESUMO

Soybean is a crop of agronomic importance that requires adequate watering during its growth to achieve high production. In this study, we determined physiological, photochemical and metabolic differences in five soybean varieties selected from the parental lines of a nested association mapping population during mild drought. These varieties have been described as high yielding (NE3001, HY1; LD01-5907, HY2) or drought tolerant (PI518751; HYD1; PI398881, HYD2). Nevertheless, there has been little research on the physiological traits that sustain their high productivity under water-limited conditions. The results indicate that high-yielding varieties under drought cope with the shortage of water by enhancing their photoprotective defences and invest in growth and productivity, linked to a higher intrinsic water use efficiency. This is the case of the variety N-3001 (HY1), with a tolerance strategy involving a faster transition into the reproductive stage to avoid the drought period. The present study highlights the role of the physiological and biochemical adjustments of various soybean varieties to cope with water-limited conditions. Moreover, the obtained results underscore the fact that the high phenotypic plasticity among soybean phenotypes should be exploited to compensate for the low genetic variability of this species when selecting plant productivity in constrained environments.


Assuntos
Glycine max/metabolismo , Adaptação Fisiológica , Secas , Regulação da Expressão Gênica de Plantas , Glycine max/fisiologia
5.
Glob Chang Biol ; 23(9): 3908-3920, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28267246

RESUMO

The atmospheric [CO2 ] in which crops grow today is greater than at any point in their domestication history and represents an opportunity for positive effects on seed yield that can counteract the negative effects of greater heat and drought this century. In order to maximize yields under future atmospheric [CO2 ], we need to identify and study crop cultivars that respond most favorably to elevated [CO2 ] and understand the mechanisms contributing to their responsiveness. Soybean (Glycine max Merr.) is a widely grown oilseed crop and shows genetic variation in response to elevated [CO2 ]. However, few studies have studied the physiological basis for this variation. Here, we examined canopy light interception, photosynthesis, respiration and radiation use efficiency along with yield and yield parameters in two cultivars of soybean (Loda and HS93-4118) previously reported to have similar seed yield at ambient [CO2 ], but contrasting responses to elevated [CO2 ]. Seed yield increased by 26% at elevated [CO2 ] (600 µmol/mol) in the responsive cultivar Loda, but only by 11% in HS93-4118. Canopy light interception and leaf area index were greater in HS93-4118 in ambient [CO2 ], but increased more in response to elevated [CO2 ] in Loda. Radiation use efficiency and harvest index were also greater in Loda than HS93-4118 at both ambient and elevated [CO2 ]. Daily C assimilation was greater at elevated [CO2 ] in both cultivars, while stomatal conductance was lower. Electron transport capacity was also greater in Loda than HS93-4118, but there was no difference in the response of photosynthetic traits to elevated [CO2 ] in the two cultivars. Overall, this greater understanding of leaf- and canopy-level photosynthetic traits provides a strong conceptual basis for modeling genotypic variation in response to elevated [CO2 ].


Assuntos
Dióxido de Carbono , Glycine max , Fotossíntese , Folhas de Planta , Sementes , Glycine max/genética , Glycine max/crescimento & desenvolvimento
6.
J Integr Plant Biol ; 58(11): 914-926, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26990448

RESUMO

The role of wheat ears as a source of nitrogen (N) and carbon (C) in the grain filling process has barely been studied. To resolve this question, five wheat genotypes were labeled with 15 N-enriched nutrient solution. N remobilization and absorption were estimated via the nitrogen isotope composition of total organic matter and Rubisco. Gas exchange analyses showed that ear photosynthesis contributed substantially to grain filling in spite of the great loss of C due to respiration. Of the total kernel N, 64.7% was derived from the N acquired between sowing and anthesis, while the remaining 35.3% was derived from the N acquired between anthesis and maturity. In addition, 1.87 times more N was remobilized to the developing kernel from the ear than from the flag leaf. The higher yielding genotypes showed an increased N remobilization to the kernel compared to the lower yielding genotypes. In addition, the higher yielding genotypes remobilized more N from the ears to the kernel than the lower yielding genotypes, while the lower yielding genotypes remobilized more N from the flag leaf to the kernel. Therefore, the ears contribute significantly toward fulfilling C and N demands during grain filling.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo
7.
Plant Cell Environ ; 38(12): 2589-602, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26012898

RESUMO

This study tested the hypothesis that inoculation of soybean (Glycine max Merr.) with a Bradyrhizobium japonicum strain (USDA110) with greater N2 fixation rates would enhance soybean response to elevated [CO2 ]. In field experiments at the Soybean Free Air CO2 Enrichment facility, inoculation of soybean with USDA110 increased nodule occupancy from 5% in native soil to 54% in elevated [CO2 ] and 34% at ambient [CO2 ]. Despite this success, inoculation with USDA110 did not result in greater photosynthesis, growth or seed yield at ambient or elevated [CO2 ] in the field, presumably due to competition from native rhizobia. In a growth chamber experiment designed to study the effects of inoculation in the absence of competition, inoculation with USDA110 in sterilized soil resulted in nodule occupation of >90%, significantly greater (15) N2 fixation, photosynthetic capacity, leaf N and total plant biomass compared with plants grown with native soil bacteria. However, there was no interaction of rhizobium fertilization with elevated [CO2 ]; inoculation with USDA110 was equally beneficial at ambient and elevated [CO2 ]. These results suggest that selected rhizobia could potentially stimulate soybean yield in soils with little or no history of prior soybean production, but that better quality rhizobia do not enhance soybean responses to elevated [CO2 ].


Assuntos
Bradyrhizobium/fisiologia , Dióxido de Carbono/farmacologia , Glycine max/microbiologia , Biomassa , Fixação de Nitrogênio , Fotossíntese/fisiologia , Microbiologia do Solo , Glycine max/efeitos dos fármacos , Glycine max/fisiologia , Simbiose
8.
Plant Cell Environ ; 38(12): 2780-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26081746

RESUMO

C sink/source balance and N assimilation have been identified as target processes conditioning crop responsiveness to elevated CO2 . However, little is known about phenology-driven modifications of C and N primary metabolism at elevated CO2 in cereals such as wheat. Here, we examined the differential effect of elevated CO2 at two development stages (onset of flowering, onset of grain filling) in durum wheat (Triticum durum, var. Sula) using physiological measurements (photosynthesis, isotopes), metabolomics, proteomics and (15) N labelling. Our results show that growth at elevated CO2 was accompanied by photosynthetic acclimation through a lower internal (mesophyll) conductance but no significant effect on Rubisco content, maximal carboxylation or electron transfer. Growth at elevated CO2 altered photosynthate export and tended to accelerate leaf N remobilization, which was visible for several proteins and amino acids, as well as lysine degradation metabolism. However, grain biomass produced at elevated CO2 was larger and less N rich, suggesting that nitrogen use efficiency rather than photosynthesis is an important target for improvement, even in good CO2 -responsive cultivars.


Assuntos
Dióxido de Carbono/farmacologia , Carbono/metabolismo , Triticum/fisiologia , Aclimatação , Biomassa , Grão Comestível , Transporte de Elétrons , Lisina/metabolismo , Metabolômica , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Triticum/efeitos dos fármacos
9.
J Integr Plant Biol ; 56(5): 492-504, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24373600

RESUMO

This experiment aims to test the traits responsible for the increase in yield potential of winter wheat released in Henan Province, China. Seven established cultivars released in the last 20 years and three advanced lines were assayed. The results showed that grain yield was positively correlated with harvest index (HI), kernel number per square meter, and aboveground biomass. In addition, the HI and aboveground biomass showed an increasing trend with the year of release. Therefore, we can conclude that bread wheat breeding advances during recent decades in Henan Province, China, have been achieved through an increase in HI, kernel number per square meter, and aboveground biomass. A higher δ(13)C seems also to be involved in these advances, which suggests a progressive improvement in constitutive water use efficiency not associated with a trend towards lower stomatal conductance in the most recent genotypes. However, genetic advance does not appear related to changes in photosynthesis rates on area basis when measured in the flag leaf or the spike, but only to a higher, whole-spike photosynthesis. Results also indirectly support the concept that under potential yield conditions, the spike contributed more than the flag leaf to kernel formation.


Assuntos
Triticum/metabolismo , Triticum/fisiologia , Biomassa , Isótopos de Carbono/metabolismo , China
10.
Front Plant Sci ; 15: 1352768, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807786

RESUMO

Blueberry (Vaccinium spp.) is an increasingly popular fruit around the world for their attractive taste, appearance, and most importantly their many health benefits. Global blueberry production was valued at $2.31 billion with the United States alone producing $1.02 billion of cultivated blueberries in 2021. The sustainability of blueberry production is increasingly threatened by more frequent and extreme drought events caused by climate change. Blueberry is especially prone to adverse effects from drought events due to their superficial root system and lack of root hairs, which limit blueberry's ability to intake water and nutrients from the soil especially under drought stress conditions. The goal of this paper is to review previous studies on blueberry drought tolerance focusing on physiological, biochemical, and molecular drought tolerance mechanisms, as well as genetic variability present in cultivated blueberries. We also discuss limitations of previous studies and potential directions for future efforts to develop drought-tolerant blueberry cultivars. Our review showed that the following areas are lacking in blueberry drought tolerance research: studies of root and fruit traits related to drought tolerance, large-scale cultivar screening, efforts to understand the genetic architecture of drought tolerance, tools for molecular-assisted drought tolerance improvement, and high-throughput phenotyping capability for efficient cultivar screening. Future research should be devoted to following areas: (1) drought tolerance evaluation to include a broader range of traits, such as root architecture and fruit-related performance under drought stress, to establish stronger association between physiological and molecular signals with drought tolerance mechanisms; (2) large-scale drought tolerance screening across diverse blueberry germplasm to uncover various drought tolerance mechanisms and valuable genetic resources; (3) high-throughput phenotyping tools for drought-related traits to enhance the efficiency and affordability of drought phenotyping; (4) identification of genetic architecture of drought tolerance using various mapping technologies and transcriptome analysis; (5) tools for molecular-assisted breeding for drought tolerance, such as marker-assisted selection and genomic selection, and (6) investigation of the interactions between drought and other stresses such as heat to develop stress resilient genotypes.

11.
Front Plant Sci ; 15: 1408125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011306

RESUMO

Introduction: Drought is one of the biggest problems for crop production and also affects the survival and persistence of soil rhizobia, which limits the establishment of efficient symbiosis and endangers the productivity of legumes, the main source of plant protein worldwide. Aim: Since the biodiversity can be altered by several factors including abiotic stresses or cultural practices, the objective of this research was to evaluate the effect of water availability, plant genotype and agricultural management on the presence, nodulation capacity and genotypic diversity of rhizobia. Method: A field experiment was conducted with twelve common bean genotypes under irrigation and rain-fed conditions, both in conventional and organic management. Estimation of the number of viable rhizobia present in soils was performed before the crop establishment, whereas the crop yield, nodule number and the strain diversity of bacteria present in nodules were determined at postharvest. Results: Rainfed conditions reduced the number of nodules and of isolated bacteria and their genetic diversity, although to a lesser extent than the agrochemical inputs related to conventional management. In addition, the effect of water scarcity on the conventional management soil was greater than observed under organic conditions. Conclusions: The preservation of diversity will be a key factor to maintain crop production in the future, as problems caused by drought will be exacerbated by climate change and organic management can help to maintain the biodiversity of soil microbiota, a fundamental aspect for soil health and quality.

12.
Front Plant Sci ; 15: 1385456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779063

RESUMO

Most plants produce large amounts of seeds to disperse their progeny in the environment. Plant viruses have evolved to avoid plant resistance mechanisms and use seeds for their dispersal. The presence of plant pathogenic viruses in seeds and suppression of plant host defenses is a major worldwide concern for producers and seed companies because undetected viruses in the seed can represent a significant threat to yield in many economically important crops. The vertical transmission of plant viruses occurs directly through the embryo or indirectly by getting in pollen grains or ovules. Infection of plant viruses during the early development of the seed embryo can result in morphological or genetic changes that cause poor seed quality and, more importantly, low yields due to the partial or ubiquitous presence of the virus at the earliest stages of seedling development. Understanding transmission of plant viruses and the ability to avoid plant defense mechanisms during seed embryo development will help identify primary inoculum sources, reduce virus spread, decrease severity of negative effects on plant health and productivity, and facilitate the future of plant disease management during seed development in many crops. In this article, we provide an overview of the current knowledge and understanding of plant virus transmission during seed embryo development, including the context of host-virus interaction.

13.
J Exp Bot ; 64(7): 1879-92, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23564953

RESUMO

The expansion of the world's population requires the development of high production agriculture. For this purpose, it is essential to identify target points conditioning crop responsiveness to predicted [CO2]. The aim of this study was to determine the relevance of ear sink strength in leaf protein and metabolomic profiles and its implications in photosynthetic activity and yield of durum wheat plants exposed to elevated [CO2]. For this purpose, a genotype with high harvest index (HI) (Triticum durum var. Sula) and another with low HI (Triticum durum var. Blanqueta) were exposed to elevated [CO2] (700 µmol mol(-1) versus 400 µmol mol(-1) CO2) in CO2 greenhouses. The obtained data highlighted that elevated [CO2] only increased plant growth in the genotype with the largest HI; Sula. Gas exchange analyses revealed that although exposure to 700 µmol mol(-1) depleted Rubisco content, Sula was capable of increasing the light-saturated rate of CO2 assimilation (Asat) whereas, in Blanqueta, the carbohydrate imbalance induced the down-regulation of Asat. The specific depletion of Rubisco in both genotypes under elevated [CO2], together with the enhancement of other proteins in the Calvin cycle, revealed that there was a redistribution of N from Rubisco towards RuBP regeneration. Moreover, the down-regulation of N, NO3 (-), amino acid, and organic acid content, together with the depletion of proteins involved in amino acid synthesis that was detected in Blanqueta grown at 700 µmol mol(-1) CO2, revealed that inhibition of N assimilation was involved in the carbohydrate imbalance and consequently with the down-regulation of photosynthesis and growth in these plants.


Assuntos
Dióxido de Carbono/metabolismo , Triticum/metabolismo , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Transpiração Vegetal/fisiologia , Triticum/fisiologia
14.
J Integr Plant Biol ; 55(8): 721-34, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23480453

RESUMO

Elevated CO2 leads to a decrease in potential net photosynthesis in long-term experiments and thus to a reduction in potential growth. This process is known as photosynthetic downregulation. There is no agreement on the definition of which parameters are the most sensitive for detecting CO2 acclimation. In order to investigate the most sensitive photosynthetic and molecular markers of CO2 acclimation, the effects of elevated CO2, and associated elevated temperature were analyzed in alfalfa plants inoculated with different Sinorhizobium meliloti strains. Plants (Medicago sativa L. cv. Aragón) were grown in summer or autumn in temperature gradient greenhouses (TGG). At the end of the experiment, all plants showed acclimation in both seasons, especially under elevated summer temperatures. This was probably due to the lower nitrogen (N) availability caused by decreased N2-fixation under higher temperatures. Photosynthesis measured at growth CO2 concentration, rubisco in vitro activity and maximum rate of carboxylation were the most sensitive parameters for detecting downregulation. Severe acclimation was also related with decreases in leaf nitrogen content associated with declines in rubisco content (large and small subunits) and activity that resulted in a drop in photosynthesis. Despite the sensitivity of rubisco content as a marker of acclimation, it was not coordinated with gene expression, possibly due to a lag between gene transcription and protein translation.


Assuntos
Dióxido de Carbono/fisiologia , Medicago sativa/metabolismo , Fotossíntese , Biomarcadores/metabolismo , Mudança Climática , Regulação para Baixo , Temperatura Alta , Medicago sativa/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Simbiose
15.
ISME Commun ; 3(1): 24, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973329

RESUMO

While the physiological and transcriptional response of the host to biotic and abiotic stresses have been intensely studied, little is known about the resilience of associated microbiomes and their contribution towards tolerance or response to these stresses. We evaluated the impact of elevated tropospheric ozone (O3), individually and in combination with Xanthomonas perforans infection, under open-top chamber field conditions on overall disease outcome on resistant and susceptible pepper cultivars, and their associated microbiome structure, function, and interaction network across the growing season. Pathogen infection resulted in a distinct microbial community structure and functions on the susceptible cultivar, while concurrent O3 stress did not further alter the community structure, and function. However, O3 stress exacerbated the disease severity on resistant cultivar. This altered diseased severity was accompanied by enhanced heterogeneity in associated Xanthomonas population counts, although no significant shift in overall microbiota density, microbial community structure, and function was evident. Microbial co-occurrence networks under simultaneous O3 stress and pathogen challenge indicated a shift in the most influential taxa and a less connected network, which may reflect the altered stability of interactions among community members. Increased disease severity on resistant cultivar may be explained by such altered microbial co-occurrence network, indicating the altered microbiome-associated prophylactic shield against pathogens under elevated O3. Our findings demonstrate that microbial communities respond distinctly to individual and simultaneous stressors, in this case, O3 stress and pathogen infection, and can play a significant role in predicting how plant-pathogen interactions would change in the face of climate change.

16.
Front Plant Sci ; 14: 1046397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063203

RESUMO

Drought is the most detrimental abiotic stress in agriculture, limiting crop growth and yield and, currently, its risk is increasing due to climate change. Thereby, ensuring food security will be one of the greatest challenges of the agriculture in the nearest future, accordingly it is essential to look for sustainable strategies to cope the negative impact of drought on crops. Inoculation of pulses with biostimulants such as rhizobium strains with high nitrogen fixation efficiency and drought-tolerance, has emerged as a promising and sustainable production strategy. However, some commercial inoculums are not effective under field conditions due to its lower effectiveness against indigenous rhizobium strains in the establishment of the symbiosis. Thus, in the present study, we evaluated the ability to improve drought tolerance in common bean plants of different indigenous rhizobia strains isolated from nearby crop fields in the Basque Country either affected by drought or salinity. The plants in this trial were grown in a climatic chamber under controlled conditions and exposed to values of 30% relative soil water content at the time of harvest, which is considered a severe drought. From the nine bacteria strains evaluated, three were found to be highly efficient under drought (namely 353, A12 and A13). These strains sustained high infectiveness (nodulation capacity) and effectiveness (shoot biomass production) under drought, even surpassing the plants inoculated with the CIAT899 reference strain, as well as the chemically N-fertilized plants. The tolerance mechanisms developed by plants inoculated with 353, A12 and A13 strains were a better adjustment of the cell wall elasticity that prevents mechanical damages in the plasma membrane, a higher WUE and an avoidance of the phenological delay caused by drought, developing a greater number of flowers. These results provide the basis for the development of efficient common bean inoculants able to increase the yield of this crop under drought conditions in the Northern Spain and, thus, to be used as biostimulants. In addition, the use of these efficient nitrogen fixation bacteria strains is a sustainable alternative to chemical fertilization, reducing cost and minimizing its negative impact on environment.

17.
Front Plant Sci ; 14: 1271849, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034552

RESUMO

Soybean (Glycine max) production is greatly affected by persistent and/or intermittent droughts in rainfed soybean-growing regions worldwide. Symbiotic N2 fixation (SNF) in soybean can also be significantly hampered even under moderate drought stress. The objective of this study was to identify genomic regions associated with shoot carbon isotope ratio (δ13C) as a surrogate measure for water use efficiency (WUE), nitrogen isotope ratio (δ15N) to assess relative SNF, N concentration ([N]), and carbon/nitrogen ratio (C/N). Genome-wide association mapping was performed with 105 genotypes and approximately 4 million single-nucleotide polymorphism markers derived from whole-genome resequencing information. A total of 11, 21, 22, and 22 genomic loci associated with δ13C, δ15N, [N], and C/N, respectively, were identified in two environments. Nine of these 76 loci were stable across environments, as they were detected in both environments. In addition to the 62 novel loci identified, 14 loci aligned with previously reported quantitative trait loci for different C and N traits related to drought, WUE, and N2 fixation in soybean. A total of 58 Glyma gene models encoding for different genes related to the four traits were identified in the vicinity of the genomic loci.

18.
Front Genet ; 14: 1121462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968584

RESUMO

Climate change is significantly impacting agricultural production worldwide. Peanuts provide food and nutritional security to millions of people across the globe because of its high nutritive values. Drought and heat stress alone or in combination cause substantial yield losses to peanut production. The stress, in addition, adversely impact nutritional quality. Peanuts exposed to drought stress at reproductive stage are prone to aflatoxin contamination, which imposes a restriction on use of peanuts as health food and also adversely impact peanut trade. A comprehensive understanding of the impact of drought and heat stress at physiological and molecular levels may accelerate the development of stress tolerant productive peanut cultivars adapted to a given production system. Significant progress has been achieved towards the characterization of germplasm for drought and heat stress tolerance, unlocking the physiological and molecular basis of stress tolerance, identifying significant marker-trait associations as well major QTLs and candidate genes associated with drought tolerance, which after validation may be deployed to initiate marker-assisted breeding for abiotic stress adaptation in peanut. The proof of concept about the use of transgenic technology to add value to peanuts has been demonstrated. Advances in phenomics and artificial intelligence to accelerate the timely and cost-effective collection of phenotyping data in large germplasm/breeding populations have also been discussed. Greater focus is needed to accelerate research on heat stress tolerance in peanut. A suits of technological innovations are now available in the breeders toolbox to enhance productivity and nutritional quality of peanuts in harsh environments. A holistic breeding approach that considers drought and heat-tolerant traits to simultaneously address both stresses could be a successful strategy to produce climate-resilient peanut genotypes with improved nutritional quality.

19.
Plants (Basel) ; 11(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35567141

RESUMO

Plant growth-promoting rhizobacteria (PGPR) effects on plant yield are highly variable under field conditions due to competition with soil microbiota. Previous research determined that many Bacillus velezensis PGPR strains can use pectin as a sole carbon source and that seed inoculation with PGPR plus pectin-rich orange peel (OP) can enhance PGPR-mediated increases in plant growth. Because the previous studies used a single soybean cultivar, the objective of this research was to test the effect of PGPR plus OP inoculation on plant responses in a wide range of soybean cultivars. Preliminary screening with 20 soybean cultivars in the greenhouse showed that the PGPR plus OP produced a positive increase in all plant growth parameters when all cultivar data was averaged. However, when the inoculation response was examined cultivar by cultivar there was a range of cultivar response from a 60% increase in growth parameters to a 12% decrease, pointing to the presence of a cultivar-PGPR specificity. Further greenhouse and field experiments that studied cultivars with contrast responses to synbiotic inoculation revealed that the environment and/or the molecular interactions between the plant and microorganisms may play an important role in plant responsiveness.

20.
Genetics ; 221(2)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35451475

RESUMO

Photosynthesis is a key target to improve crop production in many species including soybean [Glycine max (L.) Merr.]. A challenge is that phenotyping photosynthetic traits by traditional approaches is slow and destructive. There is proof-of-concept for leaf hyperspectral reflectance as a rapid method to model photosynthetic traits. However, the crucial step of demonstrating that hyperspectral approaches can be used to advance understanding of the genetic architecture of photosynthetic traits is untested. To address this challenge, we used full-range (500-2,400 nm) leaf reflectance spectroscopy to build partial least squares regression models to estimate leaf traits, including the rate-limiting processes of photosynthesis, maximum Rubisco carboxylation rate, and maximum electron transport. In total, 11 models were produced from a diverse population of soybean sampled over multiple field seasons to estimate photosynthetic parameters, chlorophyll content, leaf carbon and leaf nitrogen percentage, and specific leaf area (with R2 from 0.56 to 0.96 and root mean square error approximately <10% of the range of calibration data). We explore the utility of these models by applying them to the soybean nested association mapping population, which showed variability in photosynthetic and leaf traits. Genetic mapping provided insights into the underlying genetic architecture of photosynthetic traits and potential improvement in soybean. Notably, the maximum Rubisco carboxylation rate mapped to a region of chromosome 19 containing genes encoding multiple small subunits of Rubisco. We also mapped the maximum electron transport rate to a region of chromosome 10 containing a fructose 1,6-bisphosphatase gene, encoding an important enzyme in the regeneration of ribulose 1,5-bisphosphate and the sucrose biosynthetic pathway. The estimated rate-limiting steps of photosynthesis were low or negatively correlated with yield suggesting that these traits are not influenced by the same genetic mechanisms and are not limiting yield in the soybean NAM population. Leaf carbon percentage, leaf nitrogen percentage, and specific leaf area showed strong correlations with yield and may be of interest in breeding programs as a proxy for yield. This work is among the first to use hyperspectral reflectance to model and map the genetic architecture of the rate-limiting steps of photosynthesis.


Assuntos
Glycine max , Ribulose-Bifosfato Carboxilase , Carbono , Nitrogênio/metabolismo , Fotossíntese/genética , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Glycine max/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA