Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39138743

RESUMO

Population-scale genetic association studies of complex neurologic diseases have identified the underlying genetic architecture as multifactorial. Despite the study sample sizes reaching the millions, the identified disease-related genes explain only a small fraction of the phenotypic variance. Notable advancements in statistical methods now enable researchers to gain insights even from genomic regions where genotype-phenotype associations do not reach statistical significance. Such studies confirm a highly interconnected molecular network comprising a core group of genes directly involved in the disease process, alongside an expanded peripheral network, each contributing a small but potentially important (modulatory) effect. Additionally, causal inference methods, utilizing genetic instruments, have shed light on putative causal links between risk factors and clinical endpoints. In light of the pervasive genetic overlap or pleiotropy, however, caution is warranted in interpreting causal relationships inferred from these analyses. In this chapter, I will introduce the genetic association model, provide insights into the current state of genetic association studies, and discuss potential future directions.

2.
Neurology ; 102(4): e209128, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38261980

RESUMO

The Mendelian randomization (MR) paradigm allows for causal inferences to be drawn using genetic data. In recent years, the expansion of well-powered publicly available genetic association data related to phenotypes such as brain tissue gene expression, brain imaging, and neurologic diseases offers exciting opportunities for the application of MR in the field of neurology. In this review, we discuss the basic principles of MR, its myriad applications to research in neurology, and potential pitfalls of injudicious applications. Throughout, we provide examples where MR-informed findings have shed light on long-standing epidemiologic controversies, provided insights into the pathophysiology of neurologic conditions, prioritized drug targets, and informed drug repurposing opportunities. With the ever-expanding availability of genome-wide association data, we project MR to become a key driver of progress in the field of neurology. It is therefore paramount that academics and clinicians within the field are familiar with the approach.


Assuntos
Estudo de Associação Genômica Ampla , Neurologia , Humanos , Análise da Randomização Mendeliana , Encéfalo , Reposicionamento de Medicamentos
3.
JAMA Netw Open ; 7(5): e2412824, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776079

RESUMO

Importance: Vascular disease is a treatable contributor to dementia risk, but the role of specific markers remains unclear, making prevention strategies uncertain. Objective: To investigate the causal association between white matter hyperintensity (WMH) burden, clinical stroke, blood pressure (BP), and dementia risk, while accounting for potential epidemiologic biases. Design, Setting, and Participants: This study first examined the association of genetically determined WMH burden, stroke, and BP levels with Alzheimer disease (AD) in a 2-sample mendelian randomization (2SMR) framework. Second, using population-based studies (1979-2018) with prospective dementia surveillance, the genetic association of WMH, stroke, and BP with incident all-cause dementia was examined. Data analysis was performed from July 26, 2020, through July 24, 2022. Exposures: Genetically determined WMH burden and BP levels, as well as genetic liability to stroke derived from genome-wide association studies (GWASs) in European ancestry populations. Main Outcomes and Measures: The association of genetic instruments for WMH, stroke, and BP with dementia was studied using GWASs of AD (defined clinically and additionally meta-analyzed including both clinically diagnosed AD and AD defined based on parental history [AD-meta]) for 2SMR and incident all-cause dementia for longitudinal analyses. Results: In 2SMR (summary statistics-based) analyses using AD GWASs with up to 75 024 AD cases (mean [SD] age at AD onset, 75.5 [4.4] years; 56.9% women), larger WMH burden showed evidence for a causal association with increased risk of AD (odds ratio [OR], 1.43; 95% CI, 1.10-1.86; P = .007, per unit increase in WMH risk alleles) and AD-meta (OR, 1.19; 95% CI, 1.06-1.34; P = .008), after accounting for pulse pressure for the former. Blood pressure traits showed evidence for a protective association with AD, with evidence for confounding by shared genetic instruments. In the longitudinal (individual-level data) analyses involving 10 699 incident all-cause dementia cases (mean [SD] age at dementia diagnosis, 74.4 [9.1] years; 55.4% women), no significant association was observed between larger WMH burden and incident all-cause dementia (hazard ratio [HR], 1.02; 95% CI, 1.00-1.04; P = .07). Although all exposures were associated with mortality, with the strongest association observed for systolic BP (HR, 1.04; 95% CI, 1.03-1.06; P = 1.9 × 10-14), there was no evidence for selective survival bias during follow-up using illness-death models. In secondary analyses using polygenic scores, the association of genetic liability to stroke, but not genetically determined WMH, with dementia outcomes was attenuated after adjusting for interim stroke. Conclusions: These findings suggest that WMH is a primary vascular factor associated with dementia risk, emphasizing its significance in preventive strategies for dementia. Future studies are warranted to examine whether this finding can be generalized to non-European populations.


Assuntos
Pressão Sanguínea , Doenças de Pequenos Vasos Cerebrais , Demência , Humanos , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/epidemiologia , Feminino , Masculino , Idoso , Demência/genética , Demência/epidemiologia , Pressão Sanguínea/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Doença de Alzheimer/genética , Doença de Alzheimer/epidemiologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/epidemiologia , Fatores de Risco , Predisposição Genética para Doença , Idoso de 80 Anos ou mais , Estudos Prospectivos
4.
Cell Rep Med ; 5(5): 101529, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703765

RESUMO

The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.


Assuntos
Estudo de Associação Genômica Ampla , Cabeça , Neoplasias , Humanos , Cabeça/anatomia & histologia , Neoplasias/genética , Neoplasias/patologia , Feminino , Masculino , Polimorfismo de Nucleotídeo Único/genética , Variação Genética , Tamanho do Órgão/genética , Transdução de Sinais/genética , Adulto , Predisposição Genética para Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA