Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803069

RESUMO

Essential oil-based products with broad plant disease control claims are commercially available and may be a practical alternative to copper fungicides for crop protection in organic mango orchards. We evaluated the disease control efficacy and crop safety of thyme oil, savory oil, and tree tea oil through replicated in vitro, in vivo (detached leaf and potted trees), and field assays. Three Colletotrichum species associated with mango anthracnose were tested in vitro, whereas only C. siamense was used for in vivo assays. Within the range of concentrations tested in vitro (62.5 to 2,000 µl a.i./liter), thyme and savory oil displayed fungicidal activity, whereas no fungistatic or fungicidal activity was observed with tea tree oil. In the in vivo assays, none of the treatments based on a preventive application rate of thyme (1,150 µl a.i./liter), savory (2,000 µl a.i./liter), or tea tree oil (342 µl a.i./liter) were effective in preventing the development of anthracnose on wounded and artificially inoculated leaves. Although field applications of thyme or tea tree oil did not result in phytotoxicity or negative impacts on fruit yield, they were ineffective in reducing the incidence and severity of naturally occurring anthracnose. Applications of copper hydroxide approved for organic agriculture were effective in controlling anthracnose in the field, and no added benefits were found by premixing this compound with thyme oil. Results indicate that essential oil products based on thyme or tea tree oil are inefficient at controlling anthracnose in mangoes.

2.
J Sci Food Agric ; 104(4): 2198-2203, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934131

RESUMO

BACKGROUND: Achieving a larger berry size accompanied with even ripening are demanded by producers in growing muscadine cultivars. The current study aimed to evaluate the impact of fruit thinning on berry size and quality in two muscadine grape cultivars, 'Triumph' a bronze-fruited cultivar bearing hermaphrodite flowers, and 'Supreme' a dark black-fruited cultivar bearing female flowers. Thinning was performed before bunch closure and only one cluster per cane was retained. RESULTS: Results indicated a significant interaction of treatments and cultivars on berry weight and berry diameter. In 'Supreme,' berry weight and berry diameter were significantly increased where thinning was performed, and difference in plant yield between thinned and not thinned vines was not significant. For 'Triumph,' thinning had no significant impact on berry weight and diameter, but yield was ultimately reduced. Other physico-chemical characters were not affected by fruit thinning. However, differences were observed between both cultivars for these characters. The values of antioxidant scavenging activity (ASA) and total phenolic content (TPC) were 62.7% and 21.7% higher in 'Supreme' as compared to 'Triumph,' irrespective of the thinning treatments. Being a colored cultivar, 'Supreme' berries have higher anthocyanins than 'Triumph,' which has a negligible amount of anthocyanins. The ASA exhibited a strong positive correlation with TPC and anthocyanin content of muscadine grapes. There was also a significant positive correlation between TPC and anthocyanins. CONCLUSION: Cluster thinning of some muscadine grape cultivars may improve individual berry size without affecting overall plant yield or the fruit color, firmness, biochemical attributes and bioactive compounds. © 2023 Society of Chemical Industry.


Assuntos
Vitis , Vitis/química , Antocianinas/análise , Frutas/química , Fenóis/análise , Antioxidantes/química
3.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638784

RESUMO

While horizontally transferred transposable elements (TEs) have been reported in several groups of plants, their importance for genome evolution remains poorly understood. To understand how horizontally transferred TEs contribute to plant genome evolution, we investigated the composition and activity of horizontally transferred TEs in the genomes of four Vitis species. A total of 35 horizontal transfer (HT) events were identified between the four Vitis species and 21 other plant species belonging to 14 different families. We determined the donor and recipient species for 28 of these HTs, with the Vitis species being recipients of 15 of them. As a result of HTs, 8-10 LTR retrotransposon clusters were newly formed in the genomes of the four Vitis species. The activities of the horizontally acquired LTR retrotransposons differed among Vitis species, showing that the consequences of HTs vary during the diversification of the recipient lineage. Our study provides the first evidence that the HT of TEs contributes to the diversification of plant genomes by generating additional TE subfamilies and causing their differential proliferation in host genomes.


Assuntos
Transferência Genética Horizontal , Variação Genética , Genoma de Planta , Retroelementos , Vitis/genética
4.
Ecotoxicol Environ Saf ; 180: 588-599, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31132554

RESUMO

Past studies have already determined that selenium (Se) is very effective in alleviating cell oxidative damage caused by various abiotic stresses in plants. Past studies have also indicated other physiological pathways by which Se may benefit plants. In order to better understand the full array of potential applications for Se in agriculture, this study investigated the influence of Se on carbohydrate and nitrogen (N) metabolism in potato plants (Solanum tuberosum L. cv. Sante) grown under cadmium (Cd) and/or arsenic (As) toxicity. Potato plants were grown in a growth chamber and fertigated with Hoagland nutrient solution with or without Se (9 µM). After 48-d of growth under Cd (40 µM) and/or As (40 µM) stress, carbohydrate and N metabolism in leaves, roots and stolons were measured. For carbohydrate metabolism, various sugars-i.e., sucrose, starch, glucose, fructose, and total soluble sugar contents (TSSC)-and the activities of enzymes associated with sucrose metabolism and glycolysis-i.e., acid invertase (AI), neutral invertase (NI), sucrose-synthetase (SS), sucrose phosphatesynthetase (SPS), fructokinase (FK), hexokinase (HK), phosphofructokinase (PFK), and pyruvatekinase (PK)-were measured. For N metabolism, NO3-, NO2- and NH4+ contents along with the enzymatic activities of nitrate reductase (NRA), nitrite reductase (NiRA), glutamine-synthetase (GS), and glutamate-synthetase (GOGAT) were measured. Overall, Cd and/or As treatments had reduced plant growth relative to those plants grown without heavy metal toxicity, due to hindered photosynthesis and alterations in N metabolism and glycolysis. Regarding N metabolism, heavy metal toxicity caused a reduction in NO3- and NO2- content and NRA and NiRA enzymatic activity and enhanced NH4+ content and GDH activity in leaves, roots and stolons. Regarding glycolysis, the activity of enzymes of glycolysis-i.e., FK, HK, PFK, and PK-were also reduced. In the C metabolism study, plants combatted Cd and As toxicity naturally by an adaptation mechanism which caused an increase in soluble sugars (fructose, glucose, sucrose) by increasing NI, SS and SSP enzymatic activity. Supplementation with Se in the Cd and/or As treatments in the carbohydrate and N metabolism studies improved plant growth. Selenium supplementation in the Cd and As treatments decreased Cd and/or As content in the plant tissue and alleviating the Cd- and/or As-induced toxicity by enhancing the C-metabolism adaptation mechanism. Applying Se to Cd and As treatments also decreased nitrogen losses by hindering Cd- and As-induced changes in the N-metabolism. Se also limited Cd and As accumulation in the plant tissue by the antagonistic effect between Cd/Se and As/Se in the roots. The results of this study indicate that in the presence of Cd and/or As. soil toxicity, Se may be a powerful tool for promoting plant growth.


Assuntos
Arsênio/toxicidade , Cádmio/toxicidade , Metabolismo dos Carboidratos/efeitos dos fármacos , Nitrogênio/metabolismo , Selênio/farmacologia , Solanum tuberosum/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Solanum tuberosum/metabolismo , Estresse Fisiológico , Sacarose/metabolismo
5.
Physiol Mol Biol Plants ; 24(3): 433-440, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29692551

RESUMO

This study aimed to assess the effect of the foliar application of ascorbic acid (AA) and citric acid (CA) on total antioxidant activity (TAA), total phenolics, total flavonoids, total anthocyanin content, antioxidant enzymes, phenylalanine ammonialyase (PAL), and polyphenol oxidase (PPO) activities in apple 'Red Spur'. The experiment was conducted on 12-years-old trees 'Red Spur' grafted on MM106 rootstock. The trees were sprayed with AA (0, 200 and 400 mg L-1) and/or CA (0, 200 and 400 mg L-1) at three different times during summer. Foliar application with AA and CA significantly (p < 0.01) enhanced all measured quality attributes and decreased the activity of PPO. Fruit from trees treated with AA at 400 mg L-1 and CA at 200 mg L-1 showed the highest TAA and catalase (CAT) enzyme activity. Total phenolics increased in fruits when trees were sprayed with AA and CA. Contrasting, AA treatment, CA had no significant effect on guaiacol peroxidase (G-POD). A significant decrease in PPO activity was detected in fruits when treated with both AA and CA. Both treatments significantly decreased the activity of PAL at 400 mg L-1. Considering the results, foliar application of AA and CA, either alone or in combination improved the quality and nutraceutical properties of 'Red Spur' apple.

6.
Sci Rep ; 14(1): 3564, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346991

RESUMO

Passiflora edulis, commonly known as passion fruit, is a crop with a fragrant aroma and refreshingly tropical flavor that is a valuable source of antioxidants. It offers a unique opportunity for growers because of its adaptability to tropical and subtropical climates. Passion fruit can be sold in the fresh market or used in value-added products, but its postharvest shelf life has not been well-researched, nor have superior cultivars been well-developed. Understanding the proteins expressed at the tissue level during the postharvest stage can help improve fruit quality and extend shelf life. In this study, we carried out comparative proteomics analysis on four passion fruit tissues, the epicarp, mesocarp, endocarp, and pulp, using multiplexed isobaric tandem mass tag (TMT) labeling quantitation. A total of 3352 proteins were identified, including 295 differentially expressed proteins (DEPs). Of these DEPs, 213 showed a fold increase greater than 1.45 (50 proteins) or a fold decrease less than 0.45 (163 proteins) with different patterns among tissue types. Among the DEPs, there were proteins expressed with functions in oxygen scavenging, lipid peroxidation, response to heat stress, and pathogen resistance. Thirty-six proteins were designated as hypothetical proteins were characterized for potential functions in immunity, cell structure, homeostasis, stress response, protein metabolism and miraculin biosynthesis. This research provides insight into tissue-specific pathways that can be further studied within fruit physiology and postharvest shelf life to aid in implementing effective plant breeding programs. Knowing the tissue-specific function of fruit is essential for improving fruit quality, developing new varieties, identifying health benefits, and optimizing processing techniques.


Assuntos
Frutas , Passiflora , Frutas/química , Proteoma/metabolismo , Passiflora/química , Melhoramento Vegetal , Antioxidantes/metabolismo
7.
Food Sci Nutr ; 12(5): 3663-3673, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726406

RESUMO

Muscadine grapes (Vitis rotundifolia Michx.) are delicate in nature with short shelf life. Postharvest technologies like modified atmosphere packaging (MAP) with reduced oxygen (O2) and elevated carbon dioxide (CO2) could increase the postharvest storage life with better quality. In the current experiment, physical and biochemical quality attributes of black and bronze cultivars of muscadine grapes ('Supreme' and 'Granny Val', respectively) were evaluated in active MAP. Fruit were packed in plastic trays, sealed with impermeable film, and CO2 was introduced into the package. The MAP was created by a rigid microperforated plastic patch coated with a proprietary semipermeable resin, which was applied over a hole in the tray; packages with the same size hole without a patch were the control. Fruit were stored at 4°C for 42 days (6 weeks). MAP resulted in significantly lower decay incidence and better retention of fruit firmness for up to 28 days of storage in both cultivars as well as reducing color changes in 'Supreme' fruit. Although MAP did not affect the biochemical quality of muscadine grapes, total antioxidants increased initially and then decreased during storage, irrespective of packaging treatments. A significant linear increase in total phenolic content was also found during storage, regardless of treatments applied. Overall, the results of the current study demonstrate that MAP can be an affective technology to increase storage duration of muscadines with better retention of physical quality, without affecting the biochemical attributes.

8.
Heliyon ; 10(1): e22960, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163208

RESUMO

Citrus is a remarkable fruit crop, extremely sensitive to flooding conditions, which frequently trigger hypoxia stress and cause severe damage to citrus plants. Silicon nanoparticles (SiNPs) are beneficial and have the potential to overcome this problem. Therefore, the present study aimed to investigate the effect of silicon nanoparticles to overcome hypoxia stress through modulating antioxidant enzyme activity and carbohydrate metabolism. Three citrus rootstocks (Carrizo citrange, Roubidoux, and Rich 16-6) were exposed to flooding (with and without oxygen) through different SiNP treatments via foliar and root zone. SiNPs applied treatment plants showed a significant increase in photosynthesis, leaf greenness, antioxidant enzymes, and carbohydrate metabolic activities, besides the higher accumulation of proline and glycine betaine. The rate of lipid peroxidation was drastically higher in flooded plants; however, SiNPs application reduced it significantly, ultimately reducing oxidative damage. Overall, Rich16-6 rootstock showed good performance via root zone application compared to other rootstocks, possibly due to genotypical variation in silicon uptake. Our outcomes demonstrate that SiNPs significantly affect plant growth during hypoxia stress conditions, and their use is an optimal strategy to overcome this issue. This study laid the foundation for future research to use at the commercial level to overcome hypoxia stress and a potential platform for future research.

9.
Plants (Basel) ; 12(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37176932

RESUMO

The spatial arrangement and growth pattern of root systems, defined by the root system architecture (RSA), influences plant productivity and adaptation to soil environments, playing an important role in sustainable horticulture. Florida's peach production area covers contrasting soil types, making it necessary to identify rootstocks that exhibit soil-type-specific advantageous root traits. In this sense, the wide genetic diversity of the Prunus genus allows the breeding of rootstock genotypes with contrasting root traits. The evaluation of root traits expressed in young seedlings and plantlets facilitates the early selection of desirable phenotypes in rootstock breeding. Plantlets from three peach × (peach × almond) backcross populations were vegetatively propagated and grown in rhizoboxes. These backcross populations were identified as BC1251, BC1256, and BC1260 and studied in a completely randomized design. Scanned images of the entire root systems of the plantlets were analyzed for total root length distribution by diameter classes, root dry weight by depth horizons, root morphological components, structural root parameters, and root spreading angles. The BC1260 progeny presented a shallower root system and lower root growth. Backcross BC1251 progeny exhibited a more vigorous and deeper root system at narrower root angles, potentially allowing it to explore and exploit water and nutrients in deep sandy entisols from the Florida central ridge.

10.
Hortic Res ; 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35184166

RESUMO

Grafting is a widely used practice for asexual propagation of fruit trees. Many physiological, biochemical, and molecular changes occur upon grafting that can influence important horticultural traits. This technology has many advantages, including avoidance of juvenility, modifying the scion architecture, improving productivity, adapting scion cultivars to unfavourable environmental conditions, and developing traits in resistance to insect pests, bacterial and fungal diseases. A limitation of grafting is scion-rootstock incompatibility. It may be caused by many factors, including insufficient genetic proximity, physiological or biochemical factors, lignification at the graft union, poor graft architecture, insufficient cell recognition between union tissues, and metabolic differences in the scion and the rootstock. Plant hormones, like auxin, ethylene (ET), cytokinin (CK), gibberellin (GA), abscisic acid (ABA), and jasmonic acid (JA) orchestrate several crucial physiological and biochemical processes happening at the site of the graft union. Additionally, epigenetic changes at the union affect chromatin architecture by DNA methylation, histone modification, and the action of small RNA molecules. The mechanism triggering these effects likely is affected by hormonal crosstalk, protein and small molecules movement, nutrients uptake, and transport in the grafted trees. This review provides an overview of the basis of physiological, biochemical, and molecular aspects of fruit tree grafting between scion and rootstock.

11.
Front Plant Sci ; 13: 949383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061784

RESUMO

In commercial fruit production, synchronized ripening and stable shelf life are important properties. The loosely clustered or non-bunching muscadine grape has unrealized potential as a disease-resistant cash crop, but requires repeated hand harvesting due to its unsynchronized or long or heterogeneous maturation period. Genomic research can be used to identify the developmental and environmental factors that control fruit ripening and postharvest quality. This study coupled the morphological, biochemical, and genetic variations between "Carlos" and "Noble" muscadine grape cultivars with RNA-sequencing analysis during berry maturation. The levels of antioxidants, anthocyanins, and titratable acids varied between the two cultivars during the ripening process. We also identified new genes, pathways, and regulatory networks that modulated berry ripening in muscadine grape. These findings may help develop a large-scale database of the genetic factors of muscadine grape ripening and postharvest profiles and allow the discovery of the factors underlying the ripeness heterogeneity at harvest. These genetic resources may allow us to combine applied and basic research methods in breeding to improve table and wine grape ripening uniformity, quality, stress tolerance, and postharvest handling and storage.

12.
Plants (Basel) ; 11(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015385

RESUMO

Rootstocks are fundamental for peach production, and their architectural root traits determine their performance. Root-system architecture (RSA) analysis is one of the key factors involved in rootstock selection. However, there are few RSA studies on Prunus spp., mostly due to the tedious and time-consuming labor of measuring below-ground roots. A root-phenotyping experiment was developed to analyze the RSA of seedlings from 'Okinawa' and 'Guardian'™ peach rootstocks. The seedlings were established in rhizoboxes and their root systems scanned and architecturally analyzed. The root-system depth:width ratio (D:W) throughout the experiment, as well as the root morphological parameters, the depth rooting parameters, and the root angular spread were estimated. The 'Okinawa' exhibited greater root morphological traits, as well as the other parameters, confirming the relevance of the spatial disposition and growth pattern of the root system.

13.
Plants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616252

RESUMO

Citrus canker is a ravaging bacterial disease threatening citrus crops. Its major types are Asiatic Canker, Cancrosis B, and Cancrosis C, caused by Xanthomonas citri pv. citri (Xcc), Xanthomonas citri pv. aurantifolii pathotype-B (XauB), and pathotype-C (XauC), respectively. The bacterium enters its host through stomata and wounds, from which it invades the intercellular spaces in the apoplast. It produces erumpent corky necrotic lesions often surrounded by a chlorotic halo on the leaves, young stems, and fruits, which causes dark spots, defoliation, reduced photosynthetic rate, rupture of leaf epidermis, dieback, and premature fruit drop in severe cases. Its main pathogenicity determinant gene is pthA, whose variants are present in all citrus canker-causing pathogens. Countries where citrus canker is not endemic adopt different methods to prevent the introduction of the pathogen into the region, eradicate the pathogen, and minimize its dissemination, whereas endemic regions require an integrated management program to control the disease. The main aim of the present manuscript is to shed light on the pathogen profile, its mechanism of infection, and fruitful strategies for disease management. Although an adequate method to completely eradicate citrus canker has not been introduced so far, many new methods are under research to abate the disease.

14.
Physiol Mol Biol Plants ; 17(3): 305-11, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23573023

RESUMO

The amplified fragment length polymorphism (AFLP) technique was used to examine the genetic relationships among 21 Iranian soft-seeded pomegranate (Punica granatum L.) genotypes. Out of 72 fluorescent-AFLP primer combinations screened, 31 were selected to produce the 503 polymorphic markers used in this study. Genetic similarity estimates between genotypes, calculated by the Jaccard's similarity coefficient, ranged from 0.17 to 1.00, while the cophenetic correlation coefficient between the genetic similarities and the unweighted pair group method of arithmetic averages (UPGMA) dendrogram was 0.98. The AFLP-based UPGMA dendrogram revealed two groups within the genotypes at 0.33 similarity coefficient, which reflect fruit traits such as peel and aril color, and seed firmness, as well as region of origin. Our study shows that the use of molecular markers is essential during all steps of germplasm management to avoid genotype redundancy and mislabeling. The present study will be used as a reliable reference to discriminate among these genotypes, to aid management of germplasm collections used to breed new varieties for the Iranian pomegranate industry.

15.
Food Chem ; 342: 128302, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33060002

RESUMO

The global demand for pomegranate has led to increasing research and improvement of cultivars that produce higher antioxidant compounds. The current study was carried out to evaluate the bioactive constituents and physical properties of fourteen pomegranate genotypes grown in the subtropical region of Florida. There were differences in aril color among genotypes. The highest total anthocyanin content was found in 'Ariana', 'Molla Nepes', and 'Parfianka' genotypes. Furthermore, total anthocyanin content in peel ranged from 2.14 to 10.86 mg/100 g dry weight. Total phenolic content in the pomegranate fruit juice differed significantly among genotypes, varying from 365.71 to 1167.40 mg/L. Moreover, total phenolic content in the fruit peel ranged from 1313.08 to 1700.07 mg/L. Total phenolic compounds and reducing power activity in peel tissues were greater than in pomegranate juice. Reducing power activity and titratable acidity were positively and significantly correlated with total anthocyanin content.


Assuntos
Sucos de Frutas e Vegetais/análise , Genótipo , Punica granatum/química , Punica granatum/genética , Antocianinas/análise , Antioxidantes/química , Cor , Florida , Frutas/química , Fenóis/análise , Punica granatum/crescimento & desenvolvimento
16.
Food Sci Nutr ; 9(1): 401-413, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33473302

RESUMO

The subtropical peach cultivar UFSun grafted on five different rootstocks ('Flordaguard', 'Barton', 'MP-29', 'P-22', and 'Okinawa') was investigated in terms of the pomological and biochemical parameters of the fruit. Significant differences in fruit weight and size, soluble solids content, titratable acidity, and firmness were found among some rootstocks. The fruit length and diameter were different between the 'MP-29' and other rootstocks. It was also found that firmness of 'UFSun' fruit was affected by the rootstock. The highest firmness value was found when 'UFSun' was grafted on 'Flordaguard'.' 'MP-29' fruit had the highest soluble solids content, but there were no differences among the other rootstocks. 'UFSun' fruit from trees grafted on 'MP-29' were smaller and had the most intense color compared to 'UFSun' fruit from other rootstocks. Rootstock had a significant influence on total fruit phenolic compounds, anthocyanin content, and total antioxidant activity, with fruit from 'UFSun' on 'MP-29' having the highest values in all of them. A high correlation between fruit total antioxidant activity and total phenolic content was found. Overall, the results showed that 'MP-29' seems to induce the highest fruit quality, showing higher contents of total soluble solids, total titratable acidity, total phenolic compounds, total antioxidant activity, and total anthocyanin content. Selecting the right combination of the rootstock and cultivar is important for optimizing fruit quality parameters.

17.
Foods ; 10(5)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065684

RESUMO

Biochemical juice attributes and color-related traits of muscadine grape genotypes have been investigated. For this study, 90 muscadine genotypes, including 21 standard cultivars, 60 breeding lines, and 9 Vitis x Muscadinia hybrids (VM), were evaluated. The biochemical properties of total soluble solids (TSS), titratable acidity, and TSS/Acid (T/A) ratio showed modest diversity among genotypes with a range of 10.3 °Brix, 2.1 mg tartaric acid/L, and 4.6, respectively. Nonetheless, the pH trait exhibited a tight range of 0.74 among the population with a minimum and maximum pH of 3.11 ± 0.12 and 3.85 ± 0.12. Color-related traits showed more deviation between individuals. Total anthocyanin content (TAC), luminosity index (L*), hue angle (h°), and chroma index (C*) displayed a range of 398 µg/g DW, 33.2, 352.1, and 24, respectively. The hierarchical clustering map classified the population into two large groups of colored and non-colored grapes based on L* and h°, suggesting the predominance of these two characters among the population. The colored berries genotypes clade was further divided into several sub-clades depending on C*, TAC, and TSS levels. The principal component analysis (PCA) separated the four-color characteristics into two groups with a negative correlation between them, L* and C* versus TAC and h°. Further, PCA suggested the positive influence of acidity in enhancing the different nutraceutical components. Despite the nature of anthocyanins as a member of phenolic compounds, a lack of significant correlation between TAC and nutraceutical-related traits was detected. The dissimilatory matrix analysis highlighted the muscadine individuals C11-2-2, E16-9-1, O21-13-1, and Noble as particular genotypes among the population due to enhanced color characteristics.

18.
Front Nutr ; 8: 805138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096947

RESUMO

In recent decades, increasing attention has been paid to food safety and organic horticulture. Thus, people are looking for natural products to manage plant diseases, pests, and weeds. Essential oils (EOs) or EO-based products are potentially promising candidates for biocontrol agents due to their safe, bioactive, biodegradable, ecologically, and economically viable properties. Born of necessity or commercial interest to satisfy market demand for natural products, this emerging technology is highly anticipated, but its application has been limited without the benefit of a thorough analysis of the scientific evidence on efficacy, scope, and mechanism of action. This review covers the uses of EOs as broad-spectrum biocontrol agents in both preharvest and postharvest systems. The known functions of EOs in suppressing fungi, bacteria, viruses, pests, and weeds are briefly summarized. Related results and possible modes of action from recent research are listed. The weaknesses of applying EOs are also discussed, such as high volatility and low stability, low water solubility, strong influence on organoleptic properties, and phytotoxic effects. Therefore, EO formulations and methods of incorporation to enhance the strengths and compensate for the shortages are outlined. This review also concludes with research directions needed to better understand and fully evaluate EOs and provides an outlook on the prospects for future applications of EOs in organic horticulture production.

19.
Plants (Basel) ; 10(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204091

RESUMO

Traditionally, peach rootstocks are propagated by seeds due to their high availability, low cost, and easy storage and handling. However, stem cuttings allow the propagation of interspecific hybrids and keep the genetic uniformity of heterozygous genotypes. This study compared the effect of four different concentrations of K-IBA (indole-3-butyric acid potassium salt) on softwood cuttings of three peach backcrosses (peach × (peach × almond)) for rootstock propagation in two propagation systems: aeroponics and germination trays. The four concentrations of K-IBA applied were: 0.0% (w/v) as a control, 0.1% (w/v), 0.2% (w/v), and 0.4% (w/v). Data were collected on the survival rate (%), rooting rate (%), and root growth parameters. The relevance of auxin for peach cuttings rooting was evidenced. K-IBA at 0.2% showed the best rooting effect for peach softwood cuttings, evidenced by its high rooting rate and higher survival rate. K-IBA at 0.4% and 0.2% produced the highest number of adventitious roots. The highest root growth parameters were obtained in germination trays, confirming the suitability of this system for root growth. However, aeroponics was demonstrated to be as efficient as the traditional germination trays for the rooting of peach cuttings, allowing for a more controlled environment with a better use of resources.

20.
Plants (Basel) ; 10(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207783

RESUMO

In this study, fertility-related traits of 90 muscadine grape genotypes were evaluated. Selected genotypes included 21 standard cultivars, 60 breeding lines, and nine Vitis × Muscadinia hybrids (VM hybrids). The first fruiting bud (FFB), bud fertility (BF), bud fertility coefficient (BFC), number of flowers/flower cluster (N.F/FC), fruit-set efficiency (FSE), number of clusters/vine (N.C/V), and yield/vine (Y/V) traits were evaluated. The FFB trait did not show significant differences among genotypes. The muscadine genotype O28-4-2-2 (1.6 ± 0.2) displayed the FFB closest to the base; however, O17-16-2-1, O18-2-1, and VM A12-10-2 genotypes had the most distant FFB (3.6 ± 0.3). All the other fertility-related traits varied widely among the population. The BF, BFC, N.F/FC, FSE, N.C/V, and Y/V exhibited a range estimated at 35.1%, 81.5%, 259.7, 63.3%, 177 C/V, and 22.3 kg/V, respectively. The muscadine genotypes O42-3-1 (36.7% ± 1.3) and Majesty (34% ± 1.2) exhibited the highest BF; however, the VM A12-10-2 (1.6% ± 0.1) recorded the lowest BF. The VM genotype O15-16-1 (82.8% ± 4.1) displayed the highest BFC; however, the VM A12-10-2 (1.3% ± 0.1) showed the lowest BFC. The muscadine genotypes D7-1-1 (280.3 F/FC ± 21.7) and O17-17-1 (20.7 F/FC ± 5.5) showed the highest and lowest N.F/FC, respectively. The maximum and minimum FSE was observed for the Rosa cultivar (65.7% ± 2.4) and muscadine genotype D7-1-1 (2.4% ± 0.2), respectively. The minimum N.C/V was recorded for VM genotype A12-10-2 (6 C/V ± 0.2) and maximum noted for muscadine genotypes B20-18-2 (183 C/V ± 7.5) and O44-14-1 (176 C/V ± 7.3). Muscadine genotype O23-11-2 (22.6 kg ± 1.1) produced the highest Y/V; however, the lowest yield was recorded for O15-17-1, Fry Seedless, Sugargate, and the VM genotypes and A12-10-2, with an average yield among them estimated at 0.4 kg ± 0.2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA