RESUMO
Motor neurons convey information about motor intent that can be extracted and interpreted to control assistive devices. However, most methods for measuring the firing activity of single neurons rely on implanted microelectrodes. Although intracortical brain-computer interfaces (BCIs) have been shown to be safe and effective, the requirement for surgery poses a barrier to widespread use that can be mitigated by instead using noninvasive interfaces. The objective of this study was to evaluate the feasibility of deriving motor control signals from a wearable sensor that can detect residual motor unit activity in paralyzed muscles after chronic cervical spinal cord injury (SCI). Despite generating no observable hand movement, volitional recruitment of motor units below the level of injury was observed across attempted movements of individual fingers and overt wrist and elbow movements. Subgroups of motor units were coactive during flexion or extension phases of the task. Single digit movement intentions were classified offline from the electromyogram (EMG) power [root-mean-square (RMS)] or motor unit firing rates with median classification accuracies >75% in both cases. Simulated online control of a virtual hand was performed with a binary classifier to test feasibility of real-time extraction and decoding of motor units. The online decomposition algorithm extracted motor units in 1.2 ms, and the firing rates predicted the correct digit motion 88 ± 24% of the time. This study provides the first demonstration of a wearable interface for recording and decoding firing rates of motor units below the level of injury in a person with motor complete SCI.NEW & NOTEWORTHY A wearable electrode array and machine learning methods were used to record and decode myoelectric signals and motor unit firing in paralyzed muscles of a person with motor complete tetraplegia. The myoelectric activity and motor unit firing rates were task specific, even in the absence of visible motion, enabling accurate classification of attempted single-digit movements. This wearable system has the potential to enable people with tetraplegia to control assistive devices through movement intent.
Assuntos
Mãos/fisiopatologia , Músculo Esquelético/fisiopatologia , Reabilitação Neurológica/instrumentação , Quadriplegia , Recrutamento Neurofisiológico/fisiologia , Traumatismos da Medula Espinal , Dispositivos Eletrônicos Vestíveis , Adulto , Eletromiografia , Estudos de Viabilidade , Humanos , Aprendizado de Máquina , Masculino , Reabilitação Neurológica/métodos , Quadriplegia/etiologia , Quadriplegia/fisiopatologia , Quadriplegia/reabilitação , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitaçãoRESUMO
A motor cortex-based brain-computer interface (BCI) creates a novel real world output directly from cortical activity. Use of a BCI has been demonstrated to be a learned skill that involves recruitment of neural populations that are directly linked to BCI control as well as those that are not. The nature of interactions between these populations, however, remains largely unknown. Here, we employed a data-driven approach to assess the interaction between both local and remote cortical areas during the use of an electrocorticographic BCI, a method which allows direct sampling of cortical surface potentials. Comparing the area controlling the BCI with remote areas, we evaluated relationships between the amplitude envelopes of band limited powers as well as non-linear phase-phase interactions. We found amplitude-amplitude interactions in the high gamma (HG, 70-150 Hz) range that were primarily located in the posterior portion of the frontal lobe, near the controlling site, and non-linear phase-phase interactions involving multiple frequencies (cross-frequency coupling between 8-11 Hz and 70-90 Hz) taking place over larger cortical distances. Further, strength of the amplitude-amplitude interactions decreased with time, whereas the phase-phase interactions did not. These findings suggest multiple modes of cortical communication taking place during BCI use that are specialized for function and depend on interaction distance.
Assuntos
Interfaces Cérebro-Computador , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Adolescente , Adulto , Criança , Biologia Computacional , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Rede Nervosa/fisiologia , Análise e Desempenho de Tarefas , Adulto JovemRESUMO
Restoring somatosensory feedback in individuals with lower-limb amputations would reduce the risk of falls and alleviate phantom limb pain. Here we show, in three individuals with transtibial amputation (one traumatic and two owing to diabetic peripheral neuropathy), that sensations from the missing foot, with control over their location and intensity, can be evoked via lateral lumbosacral spinal cord stimulation with commercially available electrodes and by modulating the intensity of stimulation in real time on the basis of signals from a wireless pressure-sensitive shoe insole. The restored somatosensation via closed-loop stimulation improved balance control (with a 19-point improvement in the composite score of the Sensory Organization Test in one individual) and gait stability (with a 5-point improvement in the Functional Gait Assessment in one individual). And over the implantation period of the stimulation leads, the three individuals experienced a clinically meaningful decrease in phantom limb pain (with an average reduction of nearly 70% on a visual analogue scale). Our findings support the further clinical assessment of lower-limb neuroprostheses providing somatosensory feedback.
Assuntos
Retroalimentação Sensorial , Pé , Membro Fantasma , Estimulação da Medula Espinal , Humanos , Membro Fantasma/terapia , Membro Fantasma/fisiopatologia , Retroalimentação Sensorial/fisiologia , Estimulação da Medula Espinal/métodos , Estimulação da Medula Espinal/instrumentação , Pé/fisiologia , Masculino , Pessoa de Meia-Idade , Feminino , Marcha/fisiologia , Adulto , Idoso , Amputação CirúrgicaRESUMO
By 2020, over 2.2 million people in the United States will be living with an amputated lower limb. The functional impact of amputations presents significant challenges in daily living activities. While significant work has been done to develop smart prosthetics, for the long-term development of effective and robust myoelectric control systems for transtibial amputees, there is still much that needs to be understood regarding how extrinsic muscles of the lower limb are utilized post-amputation. In this study, we examined muscle activity between the intact and residual limbs of three transtibial amputees with the aim of identifying differences in voluntary recruitment patterns during a bilateral motor task. We report that while there is variability across subjects, there are consistencies in the muscle recruitment patterns for the same functional movement between the intact and the residual limb within each subject. These results provide insights for how symmetric activation in residual muscles can be characterized and used to develop myoelectric control strategies for prosthetic devices in transtibial amputees.
Assuntos
Amputados , Membros Artificiais , Tornozelo , Fenômenos Biomecânicos , Eletromiografia , Humanos , Músculo EsqueléticoRESUMO
The premise of neuro-rehabilitation after injury is to access the residual capacity of the nervous system to improve function. We describe a patient who developed a quadrantopsia and drug-resistant focal epilepsy after an arteriovenous malformation hemorrhage. Thirty years later, he underwent placement of subdural electrodes for seizure mapping. Phosphenes were elicited in the blind right visual field with stimulation of occipital cortex. This case demonstrates that visual cortex may retain functional organization after a partial subcortical visual pathway injury. This persistent conscious mapping suggests that disconnected visual cortex could serve as a region for interfacing with neural prosthetic devices for acquired blindness.
RESUMO
Brain-computer interfaces (BCIs) benefit greatly from performance feedback, but current systems lack automatic, task-independent feedback. Cortical responses elicited from user error have the potential to serve as state-based feedback to BCI decoders. To gain a better understanding of local error potentials, we investigate responsive cortical power underlying error-related potentials (ErrPs) from the human cortex during a one-dimensional center-out BCI task, tracking the topography of high-gamma (70-100 Hz) band power (HBP) specific to BCI error. We measured electrocorticography (ECoG) in three human subjects during dynamic, continuous control over BCI cursor velocity. Subjects used motor imagery and rest to move the cursor toward and subsequently dwell within a target region. We then identified and labeled epochs where the BCI decoder incorrectly moved the cursor in the direction opposite of the subject's expectations (i.e., BCI error). We found increased HBP in various cortical areas 100-500 ms following BCI error with respect to epochs of correct, intended control. Significant responses were noted in primary somatosensory, motor, premotor, and parietal areas and generally regardless of whether the subject was using motor imagery or rest to move the cursor toward the target. Parts of somatosensory, temporal, and parietal areas exclusively had increased HBP when subjects were using motor imagery. In contrast, only part of the parietal cortex near the angular gyrus exclusively had an increase in HBP during rest. This investigation is, to our knowledge, the first to explore cortical fields changes in the context of continuous control in ECoG BCI. We present topographical changes in HBP characteristic specific to the generation of error. By focusing on continuous control, instead of on discrete control for simple selection, we investigate a more naturalistic setting and provide high ecological validity for characterizing error potentials. Such potentials could be considered as design elements for co-adaptive BCIs in the future as task-independent feedback to the decoder, allowing for more robust and individualized BCIs.
RESUMO
We are developing a wearable neural interface based on high-density surface electromyography (HDEMG) for detecting and decoding signals from spared motor units in the forearms of people with tetraplegia after spinal cord injury (SCI). A lightweight, form-fitting garment containing 150 disc electrodes and covering the entire forearm was used to map the myoelectric activity of forearm muscles during a wide range of voluntary tasks of a person with chronic tetraplegia after SCI (C5 motor and C6 sensory American Spinal Injury Association Impairment Scale B spinal cord injury). Despite exhibiting no overt finger motion, myoelectric signals were detectable for attempted movements of individual digits and were highly discriminable. Motor unit decomposition was used to identify the activity of >30 motor neurons, active specifically during rotation, pronation of the wrist (4 units), and flexion of the elbow joint (7 units), and during attempted movements of individual hand digits (1-5 units). In addition, we performed a neural connectivity analysis based on the power of the common oscillations of the identified motor neurons in the delta (~5Hz), alpha (~6-12 Hz), and beta bands (~15-30 Hz). This analysis showed clear common synaptic inputs to the identified motor neurons in all the analyzed frequency bands. This neural interface offers a new potential for the control of assistive technologies, whereby the motor neurons spared after SCI may serve as a direct readout of motor intent that allows proportional control over several distinct degrees of freedom. Moreover, this framework can be used to study the reorganization and recovery of spinal networks after injury and rehabilitation.
Assuntos
Mãos , Movimento , Músculo Esquelético/fisiopatologia , Quadriplegia/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Dispositivos Eletrônicos Vestíveis , Eletromiografia , Humanos , Neurônios Motores/fisiologiaRESUMO
OBJECTIVE: The activation of the sensorimotor cortex as measured by electrocorticographic (ECoG) signals has been correlated with contralateral hand movements in humans, as precisely as the level of individual digits. However, the relationship between individual and multiple synergistic finger movements and the neural signal as detected by ECoG has not been fully explored. The authors used intraoperative high-resolution micro-ECoG (µECoG) on the sensorimotor cortex to link neural signals to finger movements across several context-specific motor tasks. METHODS: Three neurosurgical patients with cortical lesions over eloquent regions participated. During awake craniotomy, a sensorimotor cortex area of hand movement was localized by high-frequency responses measured by an 8 × 8 µECoG grid of 3-mm interelectrode spacing. Patients performed a flexion movement of the thumb or index finger, or a pinch movement of both, based on a visual cue. High-gamma (HG; 70-230 Hz) filtered µECoG was used to identify dominant electrodes associated with thumb and index movement. Hand movements were recorded by a dataglove simultaneously with µECoG recording. RESULTS: In all 3 patients, the electrodes controlling thumb and index finger movements were identifiable approximately 3-6-mm apart by the HG-filtered µECoG signal. For HG power of cortical activation measured with µECoG, the thumb and index signals in the pinch movement were similar to those observed during thumb-only and index-only movement, respectively (all p > 0.05). Index finger movements, measured by the dataglove joint angles, were similar in both the index-only and pinch movements (p > 0.05). However, despite similar activation across the conditions, markedly decreased thumb movement was observed in pinch relative to independent thumb-only movement (all p < 0.05). CONCLUSIONS: HG-filtered µECoG signals effectively identify dominant regions associated with thumb and index finger movement. For pinch, the µECoG signal comprises a combination of the signals from individual thumb and index movements. However, while the relationship between the index finger joint angle and HG-filtered signal remains consistent between conditions, there is not a fixed relationship for thumb movement. Although the HG-filtered µECoG signal is similar in both thumb-only and pinch conditions, the actual thumb movement is markedly smaller in the pinch condition than in the thumb-only condition. This implies a nonlinear relationship between the cortical signal and the motor output for some, but importantly not all, movement types. This analysis provides insight into the tuning of the motor cortex toward specific types of motor behaviors.
RESUMO
Cortical stimulation through electrocorticographic (ECoG) electrodes is a potential method for providing sensory feedback in future prosthetic and rehabilitative applications. Here, we evaluate human subjects' ability to continuously modulate their motor behavior based on feedback from direct surface stimulation of the somatosensory cortex. Subjects wore a dataglove that measured their hand aperture position and received one of three stimuli over the hand sensory cortex based on their current hand position as compared to a target aperture position. Using cortical stimulation feedback, subjects adjusted their hand aperture to move towards the target aperture region. One subject was able to achieve accuracies and R2 values well above chance (best performance: R2 = 0.93; accuracy = 0.76/1). Performance dropped during the catch trial (same stimulus independent of the position) to below chance levels, suggesting that the subject had been using the varied sensory feedback to modulate their motor behavior. To our knowledge, this study represents one of the first demonstrations of using direct cortical surface stimulation of the human sensory cortex to perform a motor task, and is a first step towards developing closed-loop human sensorimotor brain-computer interfaces.
Assuntos
Estimulação Elétrica/métodos , Retroalimentação Sensorial/fisiologia , Mãos/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Interfaces Cérebro-Computador , Eletrocorticografia , Humanos , PsicofísicaRESUMO
OBJECTIVE: The purpose of this study is to determine the relationship between cortical electrophysiological (CE) signals recorded from the surface of the brain (subdural electrocorticography, or ECoG) and signals recorded extracranially from the subgaleal (SG) space. METHODS: We simultaneously recorded several hours of continuous ECoG and SG signals from 3 human pediatric subjects, and compared power spectra of signals between a differential SG montage and several differential ECoG montages to determine the nature of the transfer function between them. RESULTS: We demonstrate the presence of CE signals in the SG montage in the high-gamma range (HG, 70-110 Hz), and the transfer function between 70 and 110 Hz is best characterized as a linear function of frequency. We also test an alternative transfer function, i.e. a single pole filter, to test the hypothesis of frequency dependent attenuation in that range, but find this model to be inferior to the linear model. CONCLUSIONS: Our findings indicate that SG electrodes are capable of recording HG signals without frequency distortion compared with ECoG electrodes. SIGNIFICANCE: HG signals could be recorded minimally invasively from outside the skull, which could be important for clinical care or brain-computer interface applications.
Assuntos
Córtex Cerebral/fisiologia , Eletrocorticografia/métodos , Eletrodos Implantados , Espaço Subdural/fisiologia , Criança , Pré-Escolar , Eletrocorticografia/instrumentação , Eletroencefalografia/métodos , Feminino , Humanos , MasculinoRESUMO
We describe the first direct brain-to-brain interface in humans and present results from experiments involving six different subjects. Our non-invasive interface, demonstrated originally in August 2013, combines electroencephalography (EEG) for recording brain signals with transcranial magnetic stimulation (TMS) for delivering information to the brain. We illustrate our method using a visuomotor task in which two humans must cooperate through direct brain-to-brain communication to achieve a desired goal in a computer game. The brain-to-brain interface detects motor imagery in EEG signals recorded from one subject (the "sender") and transmits this information over the internet to the motor cortex region of a second subject (the "receiver"). This allows the sender to cause a desired motor response in the receiver (a press on a touchpad) via TMS. We quantify the performance of the brain-to-brain interface in terms of the amount of information transmitted as well as the accuracies attained in (1) decoding the sender's signals, (2) generating a motor response from the receiver upon stimulation, and (3) achieving the overall goal in the cooperative visuomotor task. Our results provide evidence for a rudimentary form of direct information transmission from one human brain to another using non-invasive means.
Assuntos
Encéfalo/fisiologia , Comunicação , Adulto , Eletroencefalografia , Humanos , Masculino , Estimulação Magnética Transcraniana , Interface Usuário-Computador , Adulto JovemRESUMO
Brain-computer interfaces (BCIs) have traditionally been developed for paralyzed and locked-in individuals with no motor control. However, there is a much larger population of patients with some residual motor function as well as the general population of able-bodied individuals, both of whom could benefit significantly from BCIs. An important question that has yet to be systematically studied is: can subjects use BCIs simultaneously with overt motor activity? We present results from a preliminary study aimed at exploring this question. Three subjects used hand motor imagery in an electroencephalographic (EEG) BCI while simultaneously using a joystick to control a cursor. Particular attention was paid to preventing potential muscle artifacts from influencing imagery-based control. All three subjects were able to use the hybrid "imagery+joystick" mode of control over two days, demonstrating the ability to learn and significantly improve performance. These results suggest that subjects can potentially augment their normal human sensorimotor capability by exercising direct brain control over devices concurrently with overt motor control.