Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114340, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38865239

RESUMO

Whole salivary gland generation and transplantation offer potential therapies for salivary gland dysfunction. However, the specific lineage required to engineer complete salivary glands has remained elusive. In this study, we identify the Foxa2 lineage as a critical lineage for salivary gland development through conditional blastocyst complementation (CBC). Foxa2 lineage marking begins at the boundary between the endodermal and ectodermal regions of the oral epithelium before the formation of the primordial salivary gland, thereby labeling the entire gland. Ablation of Fgfr2 within the Foxa2 lineage in mice leads to salivary gland agenesis. We reversed this phenotype by injecting donor pluripotent stem cells into the mouse blastocysts, resulting in mice that survived to adulthood with salivary glands of normal size, comparable to those of their littermate controls. These findings demonstrate that CBC-based salivary gland regeneration serves as a foundational experimental approach for future advanced cell-based therapies.


Assuntos
Blastocisto , Fator 3-beta Nuclear de Hepatócito , Células-Tronco Pluripotentes , Glândulas Salivares , Animais , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo , Blastocisto/metabolismo , Blastocisto/citologia , Camundongos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Fator 3-beta Nuclear de Hepatócito/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Linhagem da Célula , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
2.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895424

RESUMO

In the animal kingdom, evolutionarily conserved mechanisms known as cell competition eliminate unfit cells during development. Interestingly, cell competition also leads to apoptosis of donor cells upon direct contact with host cells from a different species during interspecies chimera formation. The mechanisms underlying how host animal cells recognize and transmit cell death signals to adjacent xenogeneic human cells remain incompletely understood. In this study, we developed an interspecies cell contact reporter system to dissect the mechanisms underlying competitive interactions between mouse and human pluripotent stem cells (PSCs). Through single-cell RNA-seq analyses, we discovered that Ephrin A ligands in mouse cells play a crucial role in signaling cell death to adjacent human cells that express EPHA receptors during interspecies PSC co-culture. We also demonstrated that blocking the Ephrin A-EPHA receptor interaction pharmacologically, and inhibiting Ephrin forward signaling genetically in the mouse cells, enhances the survival of human PSCs and promotes chimera formation both in vitro and in vivo . Our findings elucidate key mechanisms of interspecies PSC competition during early embryogenesis and open new avenues for generating humanized tissues or organs in animals, potentially revolutionizing regenerative medicine.

3.
Front Cell Dev Biol ; 11: 1070560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743411

RESUMO

Millions of people suffer from end-stage refractory diseases. The ideal treatment option for terminally ill patients is organ transplantation. However, donor organs are in absolute shortage, and sadly, most patients die while waiting for a donor organ. To date, no technology has achieved long-term sustainable patient-derived organ generation. In this regard, emerging technologies of chimeric human organ production via blastocyst complementation (BC) holds great promise. To take human organ generation via BC and transplantation to the next step, we reviewed current emerging organ generation technologies and the associated efficiency of chimera formation in human cells from the standpoint of developmental biology.

4.
Curr Protoc ; 3(3): e714, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36912580

RESUMO

Primary fibroblasts are a precious resource in the field of translational regenerative medicine. Dermal fibroblasts derived from human subject biopsies are being used as donor tissues for the derivation of patient-specific iPSC lines, which in turn are used for disease modeling, drug screening, tissue engineering, and cell transplantation. We developed a fast and simple protocol to grow dermal fibroblasts from skin biopsies. Using this protocol, we simply and firmly fix the biopsy piece on the surface of a tissue culture-treated plate and allow the fibroblasts to grow. This novel method eliminates any need for enzymatic digestion or mechanical dissociation of the biopsy piece. By using this newly developed protocol, we have successfully established around 100 fibroblast lines characterized by the expression of specific markers [Serpin H1 (Hsp-47), F-actin, and Vimentin]. Finally, we have used many of these fibroblast lines as donor tissues to successfully derive iPSC lines. We have developed a method that is simple, fast, convenient, efficient, and gentle on the cells to derive dermal fibroblasts from human skin biopsies. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Skin biopsy collection and fibroblast derivation Support Protocol 1: Culturing, freezing, and thawing dermal fibroblasts derived from a skin biopsy Support Protocol 2: Characterization of dermal fibroblasts by immunocytochemistry.


Assuntos
Pele , Engenharia Tecidual , Humanos , Pele/patologia , Fibroblastos/metabolismo , Linhagem Celular , Biópsia/métodos
5.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014349

RESUMO

Various patients suffer from dry mouth due to salivary gland dysfunction. Whole salivary gland generation and transplantation is a potential therapy to resolve this issue. However, the lineage permissible to design the entire salivary gland generation has been enigmatic. Here, we discovered Foxa2 as a lineage critical for generating a salivary gland via conditional blastocyst complementation (CBC). Foxa2 linage, but not Shh nor Pitx2, initiated to label between the boundary region of the endodermal and the ectodermal oral mucosa before primordial salivary gland formation, resulting in marking the entire salivary gland. The salivary gland was agenesis by depleting Fgfr2 under the Foxa2 lineage in the mice. We rescued this phenotype by injecting donor pluripotent stem cells into the mouse blastocysts. Those mice survived until adulthood with normal salivary glands compatible in size compared with littermate controls. These results indicated that CBC-based salivary gland generation is promising for next-generation cell-based therapy.

6.
Elife ; 122023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861292

RESUMO

Millions suffer from incurable lung diseases, and the donor lung shortage hampers organ transplants. Generating the whole organ in conjunction with the thymus is a significant milestone for organ transplantation because the thymus is the central organ to educate immune cells. Using lineage-tracing mice and human pluripotent stem cell (PSC)-derived lung-directed differentiation, we revealed that gastrulating Foxa2 lineage contributed to both lung mesenchyme and epithelium formation. Interestingly, Foxa2 lineage-derived cells in the lung mesenchyme progressively increased and occupied more than half of the mesenchyme niche, including endothelial cells, during lung development. Foxa2 promoter-driven, conditional Fgfr2 gene depletion caused the lung and thymus agenesis phenotype in mice. Wild-type donor mouse PSCs injected into their blastocysts rescued this phenotype by complementing the Fgfr2-defective niche in the lung epithelium and mesenchyme and thymic epithelium. Donor cell is shown to replace the entire lung epithelial and robust mesenchymal niche during lung development, efficiently complementing the nearly entire lung niche. Importantly, those mice survived until adulthood with normal lung function. These results suggest that our Foxa2 lineage-based model is unique for the progressive mobilization of donor cells into both epithelial and mesenchymal lung niches and thymus generation, which can provide critical insights into studying lung transplantation post-transplantation shortly.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes , Camundongos , Humanos , Animais , Adulto , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Pulmão , Blastocisto/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo
7.
Adv Differ Equ ; 2021(1): 473, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721555

RESUMO

In this study, we discuss a cancer model considering discrete time-delay in tumor-immune interaction and stimulation processes. This study aims to analyze and observe the dynamics of the model along with variation of vital parameters and the delay effect on anti-tumor immune responses. We obtain sufficient conditions for the existence of equilibrium points and their stability. Existence of Hopf bifurcation at co-axial equilibrium is investigated. The stability of bifurcating periodic solutions is discussed, and the time length for which the solutions preserve the stability is estimated. Furthermore, we have derived the conditions for the direction of bifurcating periodic solutions. Theoretically, it was observed that the system undergoes different states if we vary the system's parameters. Some numerical simulations are presented to verify the obtained mathematical results.

8.
Adv Differ Equ ; 2021(1): 113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33619433

RESUMO

In this paper, we have mathematically analyzed a within-host model of SARS-CoV-2 which is used by Li et al. in the paper "The within-host viral kinetics of SARS-CoV-2" published in (Math. Biosci. Eng. 17(4):2853-2861, 2020). Important properties of the model, like nonnegativity of solutions and their boundedness, are established. Also, we have calculated the basic reproduction number which is an important parameter in the infection models. From stability analysis of the model, it is found that stability of the biologically feasible steady states are determined by the basic reproduction number ( χ 0 ) . Numerical simulations are done in order to substantiate analytical results. A biological implication from this study is that a COVID-19 patient with less than one basic reproduction ratio can automatically recover from the infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA