Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Foodborne Pathog Dis ; 21(1): 52-60, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819687

RESUMO

Biofilm-associated foodborne Salmonella infections in poultry have become increasingly challenging for veterinarians, particularly in developing countries, and warrant thorough investigation. We assessed the biofilm-forming tendency of poultry isolates of Salmonella enterica, namely Salmonella Typhimurium (n = 23), Salmonella Infantis (n = 28), and Salmonella Heidelberg (n = 18), in nutrient-rich Rappaport-Vassiliadis Soya (RVS) peptone broth and nutrient-deficient diluted Tryptone Soya Broth (TSB). Seven of the tested isolates exhibited moderate biofilm formation in diluted TSB, whereas two showed such formation in RVS. In addition, the Congo red agar assay revealed curli and cellulose production in seven isolates. Fourteen specific biofilm-associated genes were analyzed identifying sdiA and seqA to be the most prevalent (100%), and glyA the least prevalent (69.5%). The prevalence of the genes bcsA and csgA was significantly lower in moderate and weak biofilm formers, respectively, as compared with nonbiofilm formers in RVS peptone broth. Furthermore, the compounds carvacrol and 2-aminobenzimidazole (2-ABI) effectively inhibited biofilm formation by Salmonella serovars in RVS peptone and TSB media, respectively. Whereas the antibiofilm activity of 2-ABI against Salmonella has not been reported previously, we determined its most effective concentration at 1.5 mM among tested antibiofilm treatments. These findings indicate that Salmonella strains prevalent in poultry farms have the potential to form biofilms, and the tested compounds should be further explored as supportive or alternative antimicrobials.


Assuntos
Salmonella enterica , Animais , Salmonella enterica/genética , Peptonas/farmacologia , Biofilmes , Salmonella typhimurium/genética , Aves Domésticas
2.
World J Microbiol Biotechnol ; 39(5): 132, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959469

RESUMO

Urinary tract infections (UTIs) are predominantly caused by uropathogenic Escherichia coli (E. coli). There is rapid increase in antimicrobial resistance in UTIs, also declared as a serious health threat by World Health Organization (WHO). Present study was designed to investigate the antimicrobial resistance status with specific focus on ESBLs and carbapenemases in local uropathogenic E. coli (UPEC) isolates. E. coli isolates were characterized from patients of all ages visiting diagnostic laboratories for urine examination. Demographic data was also recorded for each patient. Antibiograms were developed to observe antibiotic resistance in UPEC using Kirby Bauer disc diffusion technique. Double Disc Synergy test (DDST) was used for phenotypic ESBL test. ESBLs and carbapenemases genes were detected in UPEC using PCR. The PCR results were confirmed by sequencing. The UPEC isolates under study exhibited 78%, 77%, 74%, 72% and 55% resistance against cefotaxime, amoxicillin, erythromycin, ceftriaxone and cefixime, respectively. Resistance against colistin and meropenem was observed in 64% and 34% isolates, respectively. Phenotypic DDST identified 48% isolates as ESBLs producers. Genotypic characterization identified 70%, 74.4% and 49% prevalence of CTXM-1, TEM-1 and CTXM-15 genes respectively. One isolate was observed exhibiting co-existence of all ESBL genes. TEM-1 + CTXM-1 and TEM-1 + CTXM-1 + CTXM-15 + OXA-1 gene patterns were dominant among ESBLs. For carbapenem-resistance, 14% isolates indicated the presence of KPC whereas GES and VIM was detected in 7% and 3.4% isolates, respectively. In conclusion, our results present a high prevalence of extensively drug resistant UPEC isolates with a considerable percentage of ESBL producers. These findings propose the need of continuous surveillance for antimicrobial resistance and targeted antimicrobial therapy.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Escherichia coli Uropatogênica/genética , Infecções por Escherichia coli/epidemiologia , Prevalência , Paquistão , beta-Lactamases/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
3.
Mol Biol Rep ; 49(8): 7377-7387, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35713798

RESUMO

BACKGROUND: Outer membrane proteins (OMPs) of Gram-negative bacteria have been known as potential vaccine targets due to their antigenic properties and host specificity. Here, we focused on the exploration of the immunogenic potential and protective efficacy of total OMPs of Salmonella enterica serovar Typhi due to their multi epitope properties, adjuvanted with nanoporous chitosan particles (NPCPs). The study was designed to extrapolate an effective, low cost prophylactic approach for typhoid fever being getting uncontrolled in Pakistan due to emergence of extensively drug resistant (XDR) strains. METHODS & RESULTS: The OMPs of two S. Typhi variants (with and without Vi capsule) alone and with nanoporous chitosan particles as adjuvant were comparatively analyzed for immunogenic potential in mice. Adaptive immunity was evaluated by ELISA and relative quantification of cytokine gene expression (IL4, IL6, IL9, IL17, IL10, TNF, INF and PPIA as house keeping gene) using RT-qPCR. Statistical analysis was done using Welch's test. The protection was recorded by challenging the immunized mice with 50% ×LD50 of S. Typhi. The Vi + ve-OMPs of S. Typhi showed the most promising results by ELISA and significantly high expression of IL-6, IL-10 and IL-17 and 92.5% protective efficacy with no detectable side effects. CONCLUSION: We can conclude that the OMPs of Vi + ve S. Typhi are the most promising candidates for future typhoid vaccines because of cost effective preparation without expensive purification steps and multi-epitope properties. Chitosan adjuvant may have applications for oral protein based vaccines but found less effective in injectable preparations.


Assuntos
Quitosana , Vacinas Tíficas-Paratíficas , Adjuvantes Imunológicos/farmacologia , Animais , Proteínas da Membrana Bacteriana Externa , Quitosana/farmacologia , Epitopos , Camundongos , Salmonella typhi/genética , Vacinas Tíficas-Paratíficas/farmacologia
4.
Genet Med ; 23(11): 2138-2149, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34244665

RESUMO

PURPOSE: We aimed to define a novel autosomal recessive neurodevelopmental disorder, characterize its clinical features, and identify the underlying genetic cause for this condition. METHODS: We performed a detailed clinical characterization of 19 individuals from nine unrelated, consanguineous families with a neurodevelopmental disorder. We used genome/exome sequencing approaches, linkage and cosegregation analyses to identify disease-causing variants, and we performed three-dimensional molecular in silico analysis to predict causality of variants where applicable. RESULTS: In all affected individuals who presented with a neurodevelopmental syndrome with progressive microcephaly, seizures, and intellectual disability we identified biallelic disease-causing variants in Protocadherin-gamma-C4 (PCDHGC4). Five variants were predicted to induce premature protein truncation leading to a loss of PCDHGC4 function. The three detected missense variants were located in extracellular cadherin (EC) domains EC5 and EC6 of PCDHGC4, and in silico analysis of the affected residues showed that two of these substitutions were predicted to influence the Ca2+-binding affinity, which is essential for multimerization of the protein, whereas the third missense variant directly influenced the cis-dimerization interface of PCDHGC4. CONCLUSION: We show that biallelic variants in PCDHGC4 are causing a novel autosomal recessive neurodevelopmental disorder and link PCDHGC4 as a member of the clustered PCDH family to a Mendelian disorder in humans.


Assuntos
Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Proteínas Relacionadas a Caderinas , Caderinas/genética , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Fenótipo , Convulsões/genética
5.
Appl Microbiol Biotechnol ; 105(24): 9321-9332, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34797390

RESUMO

Infections caused by carbapenem-resistant Pseudomonas aeruginosa are life-threatening due to its synergistic resistance mechanisms resulting in the ineffectiveness of the used antimicrobials. This study aimed to characterize P. aeruginosa isolates for antimicrobial susceptibility, biofilm formation virulence genes, and molecular mechanisms responsible for resistance against various antimicrobials. Out of 700 samples, 91 isolates were confirmed as P. aeruginosa which were further classified into 19 non-multidrug-resistant (non-MDR), 7 multidrug-resistant (MDR), 19 extensively drug-resistant (XDR), and 8 pan drug-resistant (PDR) pulsotypes based on standard Kirby Bauer disc diffusion test and pulse field gel electrophoresis. In M9 minimal media, strong biofilms were formed by the XDR and PDR pulsotypes as compared to the non-MDR pulsotypes. The virulence genes, responsible for the worsening of wounds including LasB, plcH, toxA, and exoU, were detected among all MDR, XDR, and PDR pulsotypes. Carbapenemase activity was phenotypically detected in 45% pulsotypes and the responsible genes were found as blaGES (100%), blaVIM (58%), blaIMP (4%), and blaNDM (4%). Real-time polymerase chain reaction showed the concomitant use of multiple mechanisms such as oprD under-expression, enhanced efflux pump activity, and ampC overexpression in the resistant isolates. Polymyxin is found as the only class left with more than 80% susceptibility among the isolates which is an alarming situation suggesting appropriate measures to be taken including alternative therapies. KEY POINTS: • Multidrug-resistant P. aeruginosa isolates formed stronger biofilms in minimal media. • Only polymyxin antimicrobial was found effective against MDR P. aeruginosa isolates. • Under-expression of oprD and overexpression of ampC were found in resistant isolates.


Assuntos
Infecções por Pseudomonas , Infecção dos Ferimentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , beta-Lactamases/genética
6.
Nephrology (Carlton) ; 22(10): 818-820, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28921755

RESUMO

We present a case of a foetal sonographic finding of hyper-echogenic kidneys, which led to a strategic series of genetic tests and identified a homozygous mutation (c.424C > T, p. R142*) in the NPHP3 gene. Our study provides a rare presentation of NPHP3-related ciliopathy and adds to the mutation spectrum of the gene, being the first one from Pakistani population. With a thorough literature review, it also advocates for molecular assessment of ciliopathies to improve risk estimate for future pregnancies, and identify predisposed asymptomatic carriers.


Assuntos
Ciliopatias/genética , Códon sem Sentido , Homozigoto , Doenças Renais Císticas/genética , Cinesinas/genética , Aborto Induzido , Adulto , Ciliopatias/diagnóstico por imagem , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Idade Gestacional , Humanos , Doenças Renais Císticas/diagnóstico por imagem , Fenótipo , Gravidez , Ultrassonografia Pré-Natal
7.
Analyst ; 140(21): 7366-72, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26381602

RESUMO

Salmonella enterica serotype Typhi (S. Typhi) is the causative agent of typhoid fever and remains a major health threat in most of the developing countries. The prompt diagnosis of typhoid directly from the patient's blood requires high level of sensitivity and specificity. Some of us were the first to report PCR based diagnosis of typhoid. This approach has since then been reported by many scientists using different genomic targets. Since the number of bacteria circulating in the blood of a patient can be as low as 0.3 cfu ml(-1), there is always a room for improvement in diagnostic PCR. In the present study, the role of different types of nanoparticles was investigated to improve the existing PCR based methods for diagnosis and strain typing of S. Typhi (targeting Variable Number of Tandem Repeats [VNTR]) by using optimized PCR systems. Three different types of nanoparticles were used i.e., citrate stabilized gold nanoparticles, rhamnolipid stabilized gold and silver nanoparticles, and magnetic iron oxide nanoparticles. The non-specific amplification was significantly reduced in VNTR typing when gold and silver nanoparticles were used in an appropriate concentration. More importantly, the addition of nanoparticles decreased the non-specificity to a significant level in the case of multiplex PCR thus further validating the reliability of PCR for the diagnosis of typhoid.


Assuntos
Técnicas de Tipagem Bacteriana , Nanopartículas Metálicas/química , Reação em Cadeia da Polimerase/métodos , Salmonella typhi/classificação , Febre Tifoide/diagnóstico , Febre Tifoide/microbiologia , Proteínas de Bactérias/química , Primers do DNA/química , Proteínas de Escherichia coli/genética , Compostos Férricos/química , Flagelina , Ouro/química , Magnetismo , Repetições Minissatélites , Nanotecnologia/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Prata/química , Temperatura
8.
BMC Complement Med Ther ; 24(1): 93, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365729

RESUMO

BACKGROUND: Multidrug resistance (MDR) in the family Enterobacteriaceae is a perniciously increasing threat to global health security. The discovery of new antimicrobials having the reversing drug resistance potential may contribute to augment and revive the antibiotic arsenal in hand. This study aimed to explore the anti-Enterobacteriaceae capability of bioactive polyphenols from Punica granatum (P. granatum) and their co-action with antibiotics against clinical isolates of Enterobacteriaceae predominantly prevalent in South Asian countries. METHODS: The Kandhari P. granatum (Pakistani origin) extracts were tested for anti-Enterobacteriaceae activity by agar well diffusion assay against MDR Salmonella enterica serovar Typhi, serovar Typhimurium and Escherichia coli. Predominant compounds of active extract were determined by mass spectrometry and screened for bioactivity by agar well diffusion and minimum inhibitory concentration (MIC) assay. The active punicalagin was further evaluated at sub-inhibitory concentrations (SICs) for coactivity with nine conventional antimicrobials using a disc diffusion assay followed by time-kill experiments that proceeded with SICs of punicalagin and antimicrobials. RESULTS: Among all P. granatum crude extracts, pomegranate peel methanol extract showed the largest inhibition zones of 25, 22 and 19 mm, and the MICs as 3.9, 7.8 and 7.8 mg/mL for S. typhi, S. typhimurium and E. coli, respectively. Punicalagin and ellagic acid were determined as predominant compounds by mass spectrometry. In plate assay, punicalagin (10 mg/mL) was active with hazy inhibition zones of 17, 14, and 13 mm against S. typhi, S. typhimurium and E. coli, respectively. However, in broth dilution assay punicalagin showed no MIC up to 10 mg/mL. The SICs 30 µg, 100 µg, and 500 µg of punicalagin combined with antimicrobials i.e., aminoglycoside, ß-lactam, and fluoroquinolone act in synergy against MDR strains with % increase in inhibition zone values varying from 3.4 ± 2.7% to 73.8 ± 8.4%. In time-kill curves, a significant decrease in cell density was observed with the SICs of antimicrobials/punicalagin (0.03-60 µg/mL/30, 100, 500 µg/mL of punicalagin) combinations. CONCLUSIONS: The P. granatum peel methanol extract exhibited antimicrobial activity against MDR Enterobacteriaceae pathogens. Punicalagin, the bacteriostatic flavonoid act as a concentration-dependent sensitizing agent for antimicrobials against Enterobacteriaceae. Our findings for the therapeutic punicalagin-antimicrobial combination prompt further evaluation of punicalagin as a potent activator for drugs, which otherwise remain less or inactive against MDR strains.


Assuntos
Anti-Infecciosos , Taninos Hidrolisáveis , Punica granatum , Antibacterianos/farmacologia , Polifenóis , Enterobacteriaceae , Escherichia coli , Ágar , Metanol , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Resistência a Múltiplos Medicamentos
9.
Pak J Med Sci ; 29(2): 540-4, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24353573

RESUMO

OBJECTIVES: Production of extended spectrum beta -lactamases (ESBLs) by clinical isolates of pathogenic E. coli is a very serious therapeutic threat. This study was aimed to investigate the prevalence of ESBLs and associated drug resistance in E. coli isolates from urine and pus, and to report the drift from 2005 to 2009-10. METHODOLOGY: Among 173 E. coli isolates, 82 were phenotypically detected as ESBL producers by standard cefotaxime / clavulanic acid and ceftazidime / clavulanic acid disc diffusion tests. Antimicrobial resistance of all ESBL producers was assessed by disc diffusion method. Presence of CTX-M, TEM, SHV and OXA groups was investigated by PCR. RESULTS: The prevalence of ESBL producing E. coli increased significantly from 33.7% in 2005 to 60.0% in 2009-10 (urine: 31.8% to 62.9%; pus: 41.1% to 55.5%). Resistance to cefotaxime, ceftazidime, ciprofloxacin, gentamicin, nalidixic acid, ticarcillin-clavulanic acid, and trimethoprim-sulfamethoxazole was above 85% in both sets of isolates. Imipenem and Fosfomycin resistance was non-existent in 2005 but ranged from 3-15% in 2009-10. Remarkable increase from 9.5% to 64.7% in urinary tract isolates and from 0 to 55% in pus isolates was observed in colistin sulphate resistance. The dissemination of genes encoding ESBLs was: CTX-M 3.5%; TEM 10.7%; both CTX-M and TEM 3.5% in 2005, and CTX-M 42.5%; TEM 48.1%; both CTX-M and TEM 29.6% in 2009-10. CONCLUSIONS: Our results showed very rapid emergence of multidrug resistant ESBL producing E. coli in Pakistan posing a very serious threat in the treatment of nosocomial and community acquired infections.

10.
ACS Appl Mater Interfaces ; 15(37): 43321-43331, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37668507

RESUMO

The emergence of antimicrobial resistance is an alarming global health concern and has stimulated the development of novel functional nanomaterials to combat multi-drug-resistant (MDR) bacteria. In this work, we demonstrate for the first time the synthesis and application of surfactin-coated silver nanoparticles as an efficient antibacterial and antibiofilm agent against the drug-resistant bacteria Pseudomonas aeruginosa for safe dermal applications. Our in vivo studies showed no significant superficial dermal irritation, edema, and erythema, while microscopic analysis revealed that surfactin-coated silver nanoparticles caused no pathological alterations at the applied concentrations. These results support the potential use of surfactin-coated silver nanoparticles against drug-resistant bacterial biofilm infections and in skin wound dressing applications.


Assuntos
Nanopartículas Metálicas , Pseudomonas aeruginosa , Prata/farmacologia , Antibacterianos/farmacologia , Biofilmes
11.
J Med Virol ; 84(12): 2003-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23080509

RESUMO

Rotavirus infection is very common in developing countries and occurs at least once in children under the age of 5 years. The rate of detection of rotavirus infection in various age groups (0-5 years) in patients with gastroenteritis admitted to hospital from the Faisalabad region, Pakistan is reported. Out of 300 fecal samples, 189 (57.3%) were positive for rotavirus by immunoassay. Patients aged 7-12 months (35.4%) were infected most commonly followed by the age group 0-6 months (28%). Different genotypes of rotavirus were identified by hemi-nested RT-PCR. The most common genotype was G1P[8] (25.3%), followed by G1P[6] (21.1%). Other genotypes were G1P[9], G2P[6], G9P[10]), G3P[8] (1.5%), and G9P[11] (1%). There were two (1%) cases of mixed G genotype, one patient with two genotypes G1, G10 and another patient with 3 genotypes G1, G10, and G12. There were 6 (3.1%) cases of mixed P genotypes, 3 P[4], P[11] and 3 P[8], P[11]. These results provide an outline of rotavirus infection in this area for the first time.


Assuntos
Genótipo , Infecções por Rotavirus/epidemiologia , Rotavirus/genética , Rotavirus/isolamento & purificação , Pré-Escolar , Fezes/virologia , Feminino , Técnicas de Genotipagem , Hospitalização , Hospitais , Humanos , Lactente , Masculino , Paquistão/epidemiologia , Prevalência , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rotavirus/classificação , Infecções por Rotavirus/virologia
12.
Ann Clin Microbiol Antimicrob ; 11: 23, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22867028

RESUMO

BACKGROUND: Uropathogenic E.coli (UPEC) are among major pathogens causing urinary tract infections. Virulence factors are mainly responsible for the severity of these emerging infections. This study was planned to investigate the distribution of virulence genes and cytotoxic effects of UPEC isolates with reference to phylogenetic groups (B2, B1, D and A) to understand the presence and impact of virulence factors in the severity of infection in Faisalabad region of Pakistan. METHODS: In this study phylogenetic analysis, virulence gene identification and cytotoxicity of 59 uropathogenic E.coli isolates obtained from non-hospitalized patients was studied. RESULTS: Among 59 isolates, phylogenetic group B2 (50%) was most dominant followed by groups A, B1 (19% each) and D (12%). Isolates present in group D showed highest presence of virulence genes. The prevalence hlyA (37%) was highest followed by sfaDE (27%), papC (24%), cnf1 (20%), eaeA (19%) and afaBC3 (14%). Highly hemolytic and highly verotoxic isolates mainly belonged to group D and B2. We also found two isolates with simultaneous presence of three fimbrial adhesin genes present on pap, afa, and sfa operons. This has not been reported before and underlines the dynamic nature of these UPEC isolates. CONCLUSIONS: It was concluded that in local UPEC isolates from non-hospitalized patients, group B2 was more prevalent. However, group D isolates were most versatile as all were equipped with virulence genes and showed highest level of cytotoxicity.


Assuntos
Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade , Fatores de Virulência/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Humanos , Masculino , Paquistão , Filogenia , Escherichia coli Uropatogênica/classificação , Escherichia coli Uropatogênica/isolamento & purificação , Fatores de Virulência/metabolismo
13.
Can J Microbiol ; 58(9): 1047-54, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22906205

RESUMO

Bacillary dysentery, common in developing countries, is usually caused by Shigella species. A major problem in shigellosis is the rapid emergence of multidrug-resistant strains. This is the first detailed molecular study on drug resistance of Shigella isolates from the Faisalabad region of Pakistan. Ninety-five Shigella isolates obtained after screening of 2500 stool samples were evaluated for in vitro resistance to commonly used antimicrobial agents; the presence or absence of 20 of the most relevant drug resistance genes; and the prevalence of integrons 1, 2, and 3. Shigella flexneri was found to be the most prevalent and most resistant species. Collectively, high resistance was found towards ampicillin (96.84%), tetracycline (93.68%), streptomycin (77.89%), and chloramphenicol (72.63%). Significant emerging resistance was detected towards the modern frontline drugs ciprofloxacin (12.63%), cefradine (17.89%), ceftriaxone (20.00%), cefoperazone (22.10%), and cefixime (28.42%). Prevalence rates for bla(TEM), bla(CTX-M), gyrA, gyrB, qnrS, aadA1, strAB, tetA, tetB, catA, and catP were 78.94%, 12.63%, 20.00%, 21.05%, 21.05%, 67.36%, 42.10%, 12.63%, 53.68%, 33.68%, and 25.26%, respectively. Class 2 integrons (42.10%) were more common in the local isolates. Simultaneous detection of class 1 and 2 integrons in some isolates and a rapidly emerging resistance to modern frontline drugs are the major findings of this study.


Assuntos
Anti-Infecciosos/farmacologia , Integrons/genética , Shigella/efeitos dos fármacos , Shigella/genética , Farmacorresistência Bacteriana/genética , Disenteria Bacilar/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Paquistão , Shigella flexneri/genética
14.
NanoImpact ; 28: 100419, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36038134

RESUMO

Gold nanomaterials (GNMs) have unique optical properties with less antigenicity, and their physicochemical properties have strong relation with an immunological response at bio-interface including antigenicity. An interpretation of this correlation would significantly impact on the clinical and theranostic applications of GNMs. Herein, we studied the effect of GNMs morphology on the cytotoxicity (in-vitro), innate immune responses, hepatotoxicity, and nephrotoxicity (in-vivo studies) using gold nano-cups (GNCs), porous gold nanospheres (PGNSs) and solid gold nano particles (SGNPs) coated with the same ligand to ensure similar surface chemistry. The cytotoxicity was assessed via sulfo-rhodamine B (SRB) assay, and the cytotoxicity data showed that morphological features at nanoscale dimensions like surface roughness and hollowness etc. have a significant impact on cellular viability. The biochemical and histopathological study of liver and kidney tissues also showed that all GNMs did not show any toxicity even at high concentration (100 µL). The relative quantification of cytokine gene expression of TNF-α, IFN-γ, IL-4, 1L-6, and 1L-17 (against each morphology) was checked after in-vivo activation in mice. Among the different nanogold morphologies, PVP stabilized GNCs (PVP-GNCs) showed the highest release of pro-inflammatory cytokines, which might be due to their high surface energy and large surface area for exposure as compared to other nanogold morphologies studied. The pro-inflammatory cytokine release could be suppressed by coating with some anti-inflammatory polymer, i.e., inulin. The in-vitro results of pro-inflammatory (TNF-α, IL-1) cytokines also suggested that all GNMs may induce activation of macrophages and Th1 immune response. The in-vivo activation results showed a decrease in mRNA expression of the cytokines (TNF-α, IFN-γ, IL-4, 1L-6 and 1L-17). Based on these findings, we proposed that the shape and morphology of GNMs control their immune response at nano-bio interface, and it must be considered while designing their role for different biomedical applications like immuno-stimulation and bio-imaging.


Assuntos
Ouro , Imunidade Inata , Nanopartículas Metálicas , Animais , Camundongos , Ouro/imunologia , Interleucina-4 , Projetos de Pesquisa , Fator de Necrose Tumoral alfa
15.
Microb Drug Resist ; 28(12): 1087-1098, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36534486

RESUMO

Rapid emergence of resistance in Salmonella enterica serovar Typhi (Salmonella Typhi) against most of the available therapeutic options for typhoid has rendered its treatment more difficult. This study sought to determine the current scenario of antimicrobial resistance in local isolates of Faisalabad following several treatment failure reports. Out of 300 clinical specimens collected in 2018, 45 isolates were identified as Salmonella Typhi. To assess changes, we compared their antibiogram profile with 31 Salmonella Typhi strains isolated in 2005. The isolates collected during 2018 showed a significant rise in antimicrobial drug resistance as compared with isolates revived from the cultures of 2005, including 15 multidrug-resistant (MDR), 20 extensively drug-resistant, and 14 pan drug-resistant isolates compared with only 8 MDRs from 2005. Notably, in 2018 isolates, resistance to azithromycin was seen in 75% of the isolates. Extended-spectrum beta-lactamase production was detected in 47% of Salmonella Typhi isolates and 18% isolates showed resistance against carbapenems. The sequences of two carbapenemase genes, VIM and GES, found in Salmonella Typhi were submitted in NCBI. The carbapenem resistance is rare in Enterobacteriaceae and probably first time reported in Salmonella Typhi. H58 haplotype was identified in the 2018 Salmonella Typhi isolates and PCR-restriction fragment length polymorphism method identified 16.7% of H58 strains that belonged to lineage I, 19.4% of H58 strains that belonged to lineage II, and the remaining 63.9% that belonged to the node. The regional difference in the antimicrobial resistance trend needs effective epidemiological studies.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Salmonella typhi/genética , Antibacterianos/farmacologia , Paquistão , Testes de Sensibilidade Microbiana , Febre Tifoide/tratamento farmacológico , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana
16.
Front Microbiol ; 13: 889073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592004

RESUMO

Applying phosphate-solubilizing bacteria (PSB) as biofertilizers has enormous potential for sustainable agriculture. Despite this, there is still a lack of information regarding the expression of key genes related to phosphate-solubilization (PS) and efficient formulation strategies. In this study, we investigated rock PS by Ochrobactrum sp. SSR (DSM 109610) by relating it to bacterial gene expression and searching for an efficient formulation. The quantitative PCR (qPCR) primers were designed for PS marker genes glucose dehydrogenase (gcd), pyrroloquinoline quinone biosynthesis protein C (pqqC), and phosphatase (pho). The SSR-inoculated soil supplemented with rock phosphate (RP) showed a 6-fold higher expression of pqqC and pho compared to inoculated soil without RP. Additionally, an increase in plant phosphorous (P) (2%), available soil P (4.7%), and alkaline phosphatase (6%) activity was observed in PSB-inoculated plants supplemented with RP. The root architecture improved by SSR, with higher root length, diameter, and volume. Ochrobactrum sp. SSR was further used to design bioformulations with two well-characterized PS, Enterobacter spp. DSM 109592 and DSM 109593, using the four organic amendments, biochar, compost, filter mud (FM), and humic acid. All four carrier materials maintained adequate survival and inoculum shelf life of the bacterium, as indicated by the field emission scanning electron microscopy analysis. The FM-based bioformulation was most efficacious and enhanced not only wheat grain yield (4-9%) but also seed P (9%). Moreover, FM-based bioformulation enhanced soil available P (8.5-11%) and phosphatase activity (4-5%). Positive correlations were observed between the PSB solubilization in the presence of different insoluble P sources, and soil available P, soil phosphatase activity, seed P content, and grain yield of the field grown inoculated wheat variety Faisalabad-2008, when di-ammonium phosphate fertilizer application was reduced by 20%. This study reports for the first time the marker gene expression of an inoculated PSB strain and provides a valuable groundwork to design field scale formulations that can maintain inoculum dynamics and increase its shelf life. This may constitute a step-change in the sustainable cultivation of wheat under the P-deficient soil conditions.

17.
Microb Drug Resist ; 28(1): 120-126, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34357814

RESUMO

Objective: To determine the molecular strain typing and drug resistance pattern of Salmonella enterica serovar Typhi prevalent in Northwest Pakistan. Methodology: A total of 2,138 blood samples of suspected typhoid patients from Northwest Pakistan were collected followed by identification of Salmonella Typhi through biochemical, serological, and species-specific fliC-d gene amplification. These isolates were typed by variable-number tandem repeat (VNTR) profiling and investigated for drug resistance. Results: The overall prevalence of Salmonella Typhi was found to be 8.8% (n = 189). Thirty different VNTR strain types of Salmonella Typhi were detected and the most prevalent strain types were T1 and T4, whereas T27 was less prevalent strain. Among the 189 isolates 175 (92.5%) isolates were multidrug resistant, whereas 12 (5.8%) isolates were extensively drug resistant. Resistance to imipenem in Salmonella Typhi was not observed. Most of the isolates have genes encoding for resistance to fluoroquinolones, including gyrA (n = 164), gyrB (n = 160), parC (n = 164), parE (n = 160), ac(6')-ib-cr (n = 163), qnrS (n = 15), and qnrB (n = 3). Similarly, chloramphinicol (cat; n = 147), azithromycin (msrA; n = 3), and co-trimoxazole (dfrA7; n = 145) resistance genes were detected among Salmonella Typhi isolates. Conclusion: In this study, T1 and T4 type Salmonella Typhi strains were predominantly prevalent in Northwest Pakistan. Antibiotic resistance among Salmonella Typhi isolates were observed. Findings of the study would be helpful to devise an appropriate antibiotic policy to control the emergence of drug-resistant Salmonella Typhi in Pakistan.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/genética , Infecção Hospitalar/genética , Genes Bacterianos , Humanos , Testes de Sensibilidade Microbiana , Repetições Minissatélites , Tipagem Molecular , Paquistão , Centros de Atenção Terciária
18.
Braz J Microbiol ; 42(4): 1278-83, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24031752

RESUMO

The objective of this work was the phylogenetic characterization of local clinical isolates of uropathogenic E. coli with respect to drug resistance. A total of 59 uropathogenic E. coli responsible for community acquired urinary tract infections were included in this study. A triplex PCR was employed to segregate each isolate into four different phylogenetic groups (A, B1, B2 and D). Drug resistance was evaluated by disc diffusion method. The drugs used were ampicillin, aztreonam, cefixime, cefoperazone, ceftriaxone, cephradine among ß-lactam group; amikacin, gentamicin, and streptomycin among aminoglycosides; nalidixic acid and ciprofloxacin from quinolones; trimethoprim-sulfomethoxazole, and tetracycline. Among 59 uropathogenic E. coli isolates majority belonged to phylogenetic group B2 (50%) where as 19% each belonged to groups A and B1, and 12% to group D. All the isolates were multiple drug resistant (MDR). Most effective drugs against Group A, B1, and B2 were gentamicin, amikacin and cefixime; ceftriaxone and quinolones; and ceftriaxone and amikacin, respectively. Group D isolates were found to be highly resistant to all drugs. Our results have shown emergence of MDR isolates among uropathogenic E. coli with dominance of phylogenetic group B2. However, it was found that group D isolates were though less frequent, more drug resistant as compared with group B2. Groups A and B1 were relatively uncommon. Amikacin, ceftriaxone and gentamicin were the most effective drugs in general.

19.
Eur J Med Genet ; 64(7): 104226, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33872773

RESUMO

Different mutations in the Growth/Differentiation Factor 5 gene (GDF5) have been associated with varying types of skeletal dysplasia, including Grebe type chondrodysplasia (GTC), Hunter-Thompson syndrome, Du Pan Syndrome and Brachydactyly type C (BDC). Heterozygous pathogenic mutations exert milder effects, whereas homozygous mutations are known to manifest more severe phenotypes. In this study, we report a GDF5 frameshift mutation (c.404delC) segregating over six generations in an extended consanguineous Pakistani family. The family confirmed that both GTC and BDC are part of the GDF5 mutational spectrum, with severe GTC associated with homozygosity, and with a wide phenotypic variability among heterozygous carriers, ranging from unaffected non-penetrant carriers, to classical BDC and to novel unclassified types of brachydactylies.


Assuntos
Braquidactilia/genética , Fator 5 de Diferenciação de Crescimento/genética , Anormalidades Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Braquidactilia/patologia , Feminino , Mutação da Fase de Leitura , Heterozigoto , Homozigoto , Humanos , Masculino , Anormalidades Musculoesqueléticas/patologia , Osteocondrodisplasias/patologia , Linhagem
20.
Foodborne Pathog Dis ; 7(1): 85-90, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19785532

RESUMO

The Shiga toxin-producing Escherichia coli (STEC) is an emerging foodborne pathogen. The proportion of cases attributed to STEC in an episode of diarrhea in the Faisalabad region of Pakistan was investigated. In addition, as increase in Shiga toxin (Stx) release after exposure to various antimicrobial agents is widely reported, we also elucidated the in vitro effects of three commonly used antibiotics (ampicillin, gentamicin, and cefotaxime) on Stx release. Isolation and detection of STEC was done using enzyme-linked immunosorbent assay and polymerase chain reaction, followed by phenotypic characterization. In vitro Stx release from isolated STEC was determined using enzyme-linked immunosorbent assay, and Stx-induced verocytotoxicity was quantified using cytotoxicity detection assay. STEC was detected in 5 (21.7%) of 23 patients. Exposure to minimum inhibitory concentration (MIC) of ampicillin, gentamicin, and cefotaxime resulted in a considerable decrease in toxin release and level of cytotoxicity in most of the STEC isolates when compared with control (without antibiotic exposure). Exposure to sub-MIC of ampicillin resulted in a relative increase in Stx release and cytotoxicity (p

Assuntos
Ampicilina/farmacologia , Cefotaxima/farmacologia , Surtos de Doenças , Disenteria/epidemiologia , Gentamicinas/farmacologia , Toxinas Shiga/metabolismo , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Animais , Antibacterianos/farmacologia , Criança , Pré-Escolar , Chlorocebus aethiops , Disenteria/microbiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Paquistão , Fenótipo , Toxinas Shiga/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/metabolismo , Células Vero , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA