Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nat Rev Mol Cell Biol ; 23(10): 643, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35879435

Assuntos
Etilenos , Hormônios
2.
Plant Cell Environ ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012097

RESUMO

Flooding events are highly detrimental to most terrestrial plant species. However, there is an impressive diversity of plant species that thrive in flood-prone regions and represent a treasure trove of unexplored flood-resilience mechanisms. Here we surveyed a panel of four species from the Cardamineae tribe representing a broad tolerance range. This included the flood-tolerant Cardamine pratensis, Rorippa sylvestris and Rorippa palustris and the flood-sensitive species Cardamine hirsuta. All four species displayed a quiescent strategy, evidenced by the repression of shoot growth underwater. Comparative transcriptomics analyses between the four species and the sensitive model species Arabidopsis thaliana were facilitated via de novo transcriptome assembly and identification of 16 902 universal orthogroups at a high resolution. Our results suggest that tolerance likely evolved separately in the Cardamine and Rorippa species. While the Rorippa response was marked by a strong downregulation of cell-cycle genes, Cardamine minimized overall transcriptional regulation. However, a weak starvation response was a universal trait of tolerant species, potentially achieved in multiple ways. It could result from a strong decline in cell-cycle activity, but is also intertwined with autophagy, senescence, day-time photosynthesis and night-time fermentation capacity. Our data set provides a rich source to study adaptational mechanisms of flooding tolerance.

3.
Physiol Plant ; 176(1): e14209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348703

RESUMO

Abiotic stresses such as heat, drought and submergence are major threats to global food security. Despite simultaneous or sequential occurrence of these stresses being recurrent under field conditions, crop response to such stress combinations is poorly understood. Rice is a staple food crop for the majority of human beings. Exploitation of existing genetic diversity in rice for combined and/or sequential stress is a useful approach for developing climate-resilient cultivars. We phenotyped ~400 rice accessions under high temperature, drought, or submergence and their combinations. A cumulative performance index revealed Lomello as the best performer across stress and stress combinations at the seedling stage. Lomello showed a remarkable ability to maintain a higher quantum yield of photosystem (PS) II photochemistry. Moreover, the structural integrity of the photosystems, electron flow through both PSI and PSII and the ability to protect photosystems against photoinhibition were identified as the key traits of Lomello across the stress environments. A higher membrane stability and an increased amount of leaf chlorophyll under stress may be due to an efficient management of reactive oxygen species (ROS) at the cellular level. Further, an efficient electron flow through the photosystems and, thus, a higher photosynthetic rate in Lomello is expected to act as a sink for ROS by reducing the rate of electron transport to the high amount of molecular oxygen present in the chloroplast. However, further studies are needed to identify the molecular mechanism(s) involved in the stability of photosynthetic machinery and stress management in Lomello during stress conditions.


Assuntos
Oryza , Humanos , Oryza/fisiologia , Espécies Reativas de Oxigênio , Fotossíntese/fisiologia , Clorofila , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo
4.
Plant Biotechnol J ; 21(3): 466-481, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36217562

RESUMO

Submergence limits plants' access to oxygen and light, causing massive changes in metabolism; after submergence, plants experience additional stresses, including reoxygenation, dehydration, photoinhibition and accelerated senescence. Plant responses to waterlogging and partial or complete submergence have been well studied, but our understanding of plant responses during post-submergence recovery remains limited. During post-submergence recovery, whether a plant can repair the damage caused by submergence and reoxygenation and re-activate key processes to continue to grow, determines whether the plant survives. Here, we summarize the challenges plants face when recovering from submergence, primarily focusing on studies of Arabidopsis thaliana and rice (Oryza sativa). We also highlight recent progress in elucidating the interplay among various regulatory pathways, compare post-hypoxia reoxygenation between plants and animals and provide new perspectives for future studies.


Assuntos
Arabidopsis , Oryza , Inundações , Adaptação Fisiológica , Plantas , Oryza/metabolismo , Arabidopsis/fisiologia
5.
New Phytol ; 237(4): 1146-1153, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36073550

RESUMO

Transcriptome studies of Illumina RNA-Seq datasets of different Arabidopsis thaliana natural accessions and T-DNA mutants revealed the presence of two virus-like RNA sequences which showed the typical two-segmented genome characteristics of a comovirus. This comovirus did not induce any visible symptoms in infected A. thaliana plants cultivated under standard laboratory conditions. Hence it was named Arabidopsis latent virus 1 (ArLV1). Virus infectivity in A. thaliana plants was confirmed by quantitative reverse transcription polymerase chain reaction, transmission electron microscopy and mechanical inoculation. Arabidopsis latent virus 1 can also mechanically infect Nicotiana benthamiana, causing distinct mosaic symptoms. A bioinformatics investigation of A. thaliana RNA-Seq repositories, including nearly 6500 Sequence Read Archives (SRAs) in the NCBI SRA database, revealed the presence of ArLV1 in 25% of all archived natural A. thaliana accessions and in 8.5% of all analyzed SRAs. Arabidopsis latent virus 1 could also be detected in A. thaliana plants collected from the wild. Arabidopsis latent virus 1 is highly seed-transmissible with up to 40% incidence on the progeny derived from infected A. thaliana plants. This has probably led to a worldwide distribution in the model plant A. thaliana with as yet unknown effects on plant performance in a substantial number of studies.


Assuntos
Arabidopsis , Comovirus , Comovirus/genética , Arabidopsis/genética , RNA Viral/genética , Doenças das Plantas
6.
Plant Physiol ; 190(2): 1365-1383, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35640551

RESUMO

Flooded plants experience impaired gas diffusion underwater, leading to oxygen deprivation (hypoxia). The volatile plant hormone ethylene is rapidly trapped in submerged plant cells and is instrumental for enhanced hypoxia acclimation. However, the precise mechanisms underpinning ethylene-enhanced hypoxia survival remain unclear. We studied the effect of ethylene pretreatment on hypoxia survival of Arabidopsis (Arabidopsis thaliana) primary root tips. Both hypoxia itself and re-oxygenation following hypoxia are highly damaging to root tip cells, and ethylene pretreatments reduced this damage. Ethylene pretreatment alone altered the abundance of transcripts and proteins involved in hypoxia responses, root growth, translation, and reactive oxygen species (ROS) homeostasis. Through imaging and manipulating ROS abundance in planta, we demonstrated that ethylene limited excessive ROS formation during hypoxia and subsequent re-oxygenation and improved oxidative stress survival in a PHYTOGLOBIN1-dependent manner. In addition, we showed that root growth cessation via ethylene and auxin occurred rapidly and that this quiescence behavior contributed to enhanced hypoxia tolerance. Collectively, our results show that the early flooding signal ethylene modulates a variety of processes that all contribute to hypoxia survival.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Hipóxia/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Oxigênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
7.
Plant Physiol ; 186(1): 66-78, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33793937

RESUMO

Plants are aerobic organisms relying on oxygen to serve their energy needs. The amount of oxygen available to sustain plant growth can vary significantly due to environmental constraints or developmental programs. In particular, flooding stress, which negatively impacts crop productivity, is characterized by a decline in oxygen availability. Oxygen fluctuations result in an altered redox balance and the formation of reactive oxygen/nitrogen species (ROS/RNS) during the onset of hypoxia and upon re-oxygenation. In this update, we provide an overview of the current understanding of the impact of redox and ROS/RNS on low-oxygen signaling and adaptation. We first focus on the formation of ROS and RNS during low-oxygen conditions. Following this, we examine the impact of hypoxia on cellular and organellar redox systems. Finally, we describe how redox and ROS/RNS participate in signaling events during hypoxia through potential post-translational modifications (PTMs) of hypoxia-relevant proteins. The aim of this update is to define our current understanding of the field and to provide avenues for future research directions.


Assuntos
Oxirredução , Estresse Oxidativo , Oxigênio/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico
8.
J Integr Plant Biol ; 64(2): 412-430, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35029029

RESUMO

Cereal crops are significant contributors to global diets. As climate change disrupts weather patterns and wreaks havoc on crops, the need for generating stress-resilient, high-yielding varieties is more urgent than ever. One extremely promising avenue in this regard is to exploit the tremendous genetic diversity expressed by the wild ancestors of current day crop species. These crop wild relatives thrive in a range of environments and accordingly often harbor an array of traits that allow them to do so. The identification and introgression of these traits into our staple cereal crops can lessen yield losses in stressful environments. In the last decades, a surge in extreme drought and flooding events have severely impacted cereal crop production. Climate models predict a persistence of this trend, thus reinforcing the need for research on water stress resilience. Here we review: (i) how water stress (drought and flooding) impacts crop performance; and (ii) how identification of tolerance traits and mechanisms from wild relatives of the main cereal crops, that is, rice, maize, wheat, and barley, can lead to improved survival and sustained yields in these crops under water stress conditions.


Assuntos
Desidratação , Grão Comestível , Mudança Climática , Produtos Agrícolas/genética , Grão Comestível/genética , Zea mays
9.
New Phytol ; 229(1): 79-84, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782798

RESUMO

Amphibious plants thrive in areas with fluctuating water levels, partly as a result of their capacity to make specialized leaves when submerged or emerged. The tailor-made leaves improve gas exchange underwater or prevent aerial desiccation. Aquatic leaves are thin with narrow or dissected forms, thin cuticles and fewer stomata. These traits can combine with carbon-concentrating mechanisms and various inorganic carbon utilization strategies. Signalling networks underlying this plasticity include conserved players like abscisic acid and ethylene, but closer inspection reveals greater variation in regulatory behaviours. Moreover, it seems that amphibious leaf development overrides and reverses conserved signalling pathways of their terrestrial counterparts. The diversity of physiology and signalling makes plant amphibians particularly attractive for gaining insights into the evolution of signalling and crop improvement.


Assuntos
Folhas de Planta , Plantas , Ácido Abscísico , Dióxido de Carbono , Água
10.
New Phytol ; 229(1): 64-70, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31856295

RESUMO

Submerged plants ultimately suffer from shortage in cellular oxygen availability (hypoxia) as a result of impaired gas diffusion underwater. The gaseous plant hormone ethylene is rapidly entrapped in submerged plant tissues and is an established regulator of morphological and anatomical flood-adaptive responses. Multiple recent discoveries suggest that ethylene also plays a crucial role in hypoxia anticipation and metabolic acclimation during plant submergence. Ethylene was shown to accelerate and enhance the hypoxic response through enhanced stability of specific transcription factors (group VII ethylene response factors). Moreover, we suggest that ethylene could play an important role in the induction of autophagy and promote reactive oxygen species amelioration, thereby contributing to enhanced survival during flooding, hypoxia, and reoxygenation stress.


Assuntos
Aclimatação , Etilenos , Oxigênio , Fenômenos Fisiológicos Vegetais , Plantas , Inundações , Fatores de Transcrição
11.
New Phytol ; 229(1): 140-155, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31792981

RESUMO

The molecular mechanisms controlling underwater elongation are based extensively on studies on internode elongation in the monocot rice (Oryza sativa) and petiole elongation in Rumex rosette species. Here, we characterize underwater growth in the dicot Nasturtium officinale (watercress), a wild species of the Brassicaceae family, in which submergence enhances stem elongation and suppresses petiole growth. We used a genome-wide transcriptome analysis to identify the molecular mechanisms underlying the observed antithetical growth responses. Though submergence caused a substantial reconfiguration of the petiole and stem transcriptome, only little qualitative differences were observed between both tissues. A core submergence response included hormonal regulation and metabolic readjustment for energy conservation, whereas tissue-specific responses were associated with defense, photosynthesis, and cell wall polysaccharides. Transcriptomic and physiological characterization suggested that the established ethylene, abscisic acid (ABA), and GA growth regulatory module for underwater elongation could not fully explain underwater growth in watercress. Petiole growth suppression is likely attributed to a cell cycle arrest. Underwater stem elongation is driven by an early decline in ABA and is not primarily mediated by ethylene or GA. An enhanced stem elongation observed in the night period was not linked to hypoxia and suggests an involvement of circadian regulation.


Assuntos
Nasturtium , Oryza , Rumex , Ácido Abscísico , Giberelinas , Oryza/genética , Água
12.
Proc Natl Acad Sci U S A ; 115(26): E6085-E6094, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891679

RESUMO

Abiotic stresses in plants are often transient, and the recovery phase following stress removal is critical. Flooding, a major abiotic stress that negatively impacts plant biodiversity and agriculture, is a sequential stress where tolerance is strongly dependent on viability underwater and during the postflooding period. Here we show that in Arabidopsis thaliana accessions (Bay-0 and Lp2-6), different rates of submergence recovery correlate with submergence tolerance and fecundity. A genome-wide assessment of ribosome-associated transcripts in Bay-0 and Lp2-6 revealed a signaling network regulating recovery processes. Differential recovery between the accessions was related to the activity of three genes: RESPIRATORY BURST OXIDASE HOMOLOG D, SENESCENCE-ASSOCIATED GENE113, and ORESARA1, which function in a regulatory network involving a reactive oxygen species (ROS) burst upon desubmergence and the hormones abscisic acid and ethylene. This regulatory module controls ROS homeostasis, stomatal aperture, and chlorophyll degradation during submergence recovery. This work uncovers a signaling network that regulates recovery processes following flooding to hasten the return to prestress homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estresse Fisiológico , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Etilenos/metabolismo , NADPH Oxidases/genética
13.
Plant Physiol ; 176(2): 1106-1117, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097391

RESUMO

Flooding is detrimental for nearly all higher plants, including crops. The compound stress elicited by slow gas exchange and low light levels under water is responsible for both a carbon and an energy crisis ultimately leading to plant death. The endogenous concentrations of four gaseous compounds, oxygen, carbon dioxide, ethylene, and nitric oxide, change during the submergence of plant organs in water. These gases play a pivotal role in signal transduction cascades, leading to adaptive processes such as metabolic adjustments and anatomical features. Of these gases, ethylene is seen as the most consistent, pervasive, and reliable signal of early flooding stress, most likely in tight interaction with the other gases. The production of reactive oxygen species (ROS) in plant cells during flooding and directly after subsidence, during which the plant is confronted with high light and oxygen levels, is characteristic for this abiotic stress. Low, well-controlled levels of ROS are essential for adaptive signaling pathways, in interaction with the other gaseous flooding signals. On the other hand, excessive uncontrolled bursts of ROS can be highly damaging for plants. Therefore, a fine-tuned balance is important, with a major role for ROS production and scavenging. Our understanding of the temporal dynamics of the four gases and ROS is basal, whereas it is likely that they form a signature readout of prevailing flooding conditions and subsequent adaptive responses.


Assuntos
Adaptação Fisiológica/fisiologia , Inundações , Plantas/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Dióxido de Carbono/metabolismo , Etilenos/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Plant Physiol ; 172(2): 718-733, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27329224

RESUMO

Plants have evolved shoot elongation mechanisms to escape from diverse environmental stresses such as flooding and vegetative shade. The apparent similarity in growth responses suggests a possible convergence of the signaling pathways. Shoot elongation is mediated by passive ethylene accumulating to high concentrations in flooded plant organs and by changes in light quality and quantity under vegetation shade. Here, we study hypocotyl elongation as a proxy for shoot elongation and delineate Arabidopsis (Arabidopsis thaliana) hypocotyl length kinetics in response to ethylene and shade. Based on these kinetics, we further investigated ethylene- and shade-induced genome-wide gene expression changes in hypocotyls and cotyledons separately. Both treatments induced a more extensive transcriptome reconfiguration in the hypocotyls compared with the cotyledons. Bioinformatics analyses suggested contrasting regulation of growth promotion- and photosynthesis-related genes. These analyses also suggested an induction of auxin, brassinosteroid, and gibberellin signatures and the involvement of several candidate regulators in the elongating hypocotyls. Pharmacological and mutant analyses confirmed the functional involvement of several of these candidate genes and physiological control points in regulating stress-escape responses to different environmental stimuli. We discuss how these signaling networks might be integrated and conclude that plants, when facing different stresses, utilize a conserved set of transcriptionally regulated genes to modulate and fine-tune growth.


Assuntos
Etilenos/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hipocótilo/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Análise por Conglomerados , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ontologia Genética , Hipocótilo/crescimento & desenvolvimento , Luz , Fotossíntese/genética , Reguladores de Crescimento de Plantas/farmacologia , Plântula/genética , Plântula/crescimento & desenvolvimento
15.
Plant Physiol ; 172(2): 668-689, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27208254

RESUMO

Climate change has increased the frequency and severity of flooding events, with significant negative impact on agricultural productivity. These events often submerge plant aerial organs and roots, limiting growth and survival due to a severe reduction in light reactions and gas exchange necessary for photosynthesis and respiration, respectively. To distinguish molecular responses to the compound stress imposed by submergence, we investigated transcriptomic adjustments to darkness in air and under submerged conditions using eight Arabidopsis (Arabidopsis thaliana) accessions differing significantly in sensitivity to submergence. Evaluation of root and rosette transcriptomes revealed an early transcriptional and posttranscriptional response signature that was conserved primarily across genotypes, although flooding susceptibility-associated and genotype-specific responses also were uncovered. Posttranscriptional regulation encompassed darkness- and submergence-induced alternative splicing of transcripts from pathways involved in the alternative mobilization of energy reserves. The organ-specific transcriptome adjustments reflected the distinct physiological status of roots and shoots. Root-specific transcriptome changes included marked up-regulation of chloroplast-encoded photosynthesis and redox-related genes, whereas those of the rosette were related to the regulation of development and growth processes. We identified a novel set of tolerance genes, recognized mainly by quantitative differences. These included a transcriptome signature of more pronounced gluconeogenesis in tolerant accessions, a response that included stress-induced alternative splicing. This study provides organ-specific molecular resolution of genetic variation in submergence responses involving interactions between darkness and low-oxygen constraints of flooding stress and demonstrates that early transcriptome plasticity, including alternative splicing, is associated with the ability to cope with a compound environmental stress.


Assuntos
Arabidopsis/genética , Inundações , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Transcriptoma , Adaptação Fisiológica/genética , Adaptação Fisiológica/efeitos da radiação , Arabidopsis/classificação , Escuridão , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ontologia Genética , Genótipo , Especificidade de Órgãos/genética , Fotossíntese/genética , Raízes de Plantas/genética , Brotos de Planta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Especificidade da Espécie , Estresse Fisiológico , Água/metabolismo
17.
Plant Physiol ; 169(1): 3-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25897003

RESUMO

Flooding is detrimental for plants, primarily because of restricted gas exchange underwater, which leads to an energy and carbohydrate deficit. Impeded gas exchange also causes rapid accumulation of the volatile ethylene in all flooded plant cells. Although several internal changes in the plant can signal the flooded status, it is the pervasive and rapid accumulation of ethylene that makes it an early and reliable flooding signal. Not surprisingly, it is a major regulator of several flood-adaptive plant traits. Here, we discuss these major ethylene-mediated traits, their functional relevance, and the recent progress in identifying the molecular and signaling events underlying these traits downstream of ethylene. We also speculate on the role of ethylene in postsubmergence recovery and identify several questions for future investigations.


Assuntos
Aclimatação , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Plantas/genética , Transdução de Sinais , Inundações , Fenótipo , Estresse Fisiológico
18.
Plant Physiol ; 167(4): 1616-29, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25667318

RESUMO

Plants respond to reductions in internal oxygen concentrations with adaptive mechanisms (for example, modifications of metabolism to cope with reduced supply of ATP). These responses are, at the transcriptional level, mediated by the group VII Ethylene Response Factor transcription factors, which have stability that is regulated by the N-end rule pathway of protein degradation. N-end rule pathway mutants are characterized by a constitutive expression of hypoxia response genes and abscisic acid hypersensitivity. Here, we identify a novel proteolysis6 (prt6) mutant allele, named greening after extended darkness1 (ged1), which was previously discovered in a screen for genomes uncoupled-like mutants and shows the ability to withstand long periods of darkness at the seedling stage. Interestingly, this ethyl methanesulfonate-derived mutant shows unusual chromosomal rearrangement instead of a point mutation. Furthermore, the sensitivity of N-end rule pathway mutants ged1 and prt6-1 to submergence was studied in more detail to understand previously contradicting experiments on this topic. Finally, it was shown that mutants for the N-end rule pathway are generally more tolerant to starvation conditions, such as prolonged darkness or submergence, which was partially associated with carbohydrate conservation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Oxigênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ácido Abscísico/metabolismo , Aclimatação , Alelos , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Escuridão , Etilenos/metabolismo , Imersão , Mutação , Proteólise , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
19.
Plant Cell ; 25(11): 4691-707, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24285788

RESUMO

Global climate change has increased flooding events, which affect both natural vegetation dynamics and crop productivity. The flooded environment is lethal for most plant species because it restricts gas exchange and induces an energy and carbon crisis. Flooding survival strategies have been studied in Oryza sativa, a cultivated monocot. However, our understanding of plant adaptation to natural flood-prone environments remains scant, even though wild plants represent a valuable resource of tolerance mechanisms that could be used to generate stress-tolerant crops. Here we identify mechanisms that mediate the distinct flooding survival strategies of two related wild dicot species: Rumex palustris and Rumex acetosa. Whole transcriptome sequencing and metabolite profiling reveal flooding-induced metabolic reprogramming specific to R. acetosa. By contrast, R. palustris uses the early flooding signal ethylene to increase survival by regulating shade avoidance and photomorphogenesis genes to outgrow submergence and by priming submerged plants for future low oxygen stress. These results provide molecular resolution of flooding survival strategies of two species occupying distinct hydrological niches. Learning how these contrasting flood adaptive strategies evolved in nature will be instrumental for the development of stress-tolerant crop varieties that deliver enhanced yields in a changing climate.


Assuntos
Adaptação Fisiológica , Inundações , Regulação da Expressão Gênica de Plantas , Rumex/fisiologia , Carbono/metabolismo , Ecossistema , Etilenos/metabolismo , Perfilação da Expressão Gênica , Homeostase , Íons/metabolismo , Luz , Redes e Vias Metabólicas , Oxigênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Rumex/genética , Rumex/crescimento & desenvolvimento , Rumex/metabolismo , Estresse Fisiológico
20.
Plant Physiol ; 163(3): 1277-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077074

RESUMO

Complete submergence represses photosynthesis and aerobic respiration, causing rapid mortality in most terrestrial plants. However, some plants have evolved traits allowing them to survive prolonged flooding, such as species of the genus Rorippa, close relatives of Arabidopsis (Arabidopsis thaliana). We studied plant survival, changes in carbohydrate and metabolite concentrations, and transcriptome responses to submergence of two species, Rorippa sylvestris and Rorippa amphibia. We exploited the close relationship between Rorippa species and the model species Arabidopsis by using Arabidopsis GeneChip microarrays for whole-genome transcript profiling of roots of young plants exposed to a 24-h submergence treatment or air. A probe mask was used based on hybridization of genomic DNA of both species to the arrays, so that weak probe signals due to Rorippa species/Arabidopsis mismatches were removed. Furthermore, we compared Rorippa species microarray results with those obtained for roots of submerged Arabidopsis plants. Both Rorippa species could tolerate deep submergence, with R. sylvestris surviving much longer than R. amphibia. Submergence resulted in the induction of genes involved in glycolysis and fermentation and the repression of many energy-consuming pathways, similar to the low-oxygen and submergence response of Arabidopsis and rice (Oryza sativa). The qualitative responses of both Rorippa species to submergence appeared roughly similar but differed quantitatively. Notably, glycolysis and fermentation genes and a gene encoding sucrose synthase were more strongly induced in the less tolerant R. amphibia than in R. sylvestris. A comparison with Arabidopsis microarray studies on submerged roots revealed some interesting differences and potential tolerance-related genes in Rorippa species.


Assuntos
Adaptação Fisiológica/genética , Genes de Plantas/genética , Família Multigênica , Raízes de Plantas/genética , Rorippa/genética , Transcriptoma , Adaptação Fisiológica/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Inundações , Frutose/metabolismo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Glucose/metabolismo , Glicólise/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rorippa/classificação , Rorippa/metabolismo , Especificidade da Espécie , Amido/metabolismo , Sacarose/metabolismo , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA