Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563568

RESUMO

In multicellular organisms, specialized tissues are generated by specific populations of stem cells through cycles of asymmetric cell divisions, where one daughter undergoes differentiation and the other maintains proliferative properties. In Arabidopsis thaliana roots, the columella - a gravity-sensing tissue that protects and defines the position of the stem cell niche - represents a typical example of a tissue whose organization is exclusively determined by the balance between proliferation and differentiation. The columella derives from a single layer of stem cells through a binary cell fate switch that is precisely controlled by multiple, independent regulatory inputs. Here, we show that the HD-Zip II transcription factors (TFs) HAT3, ATHB4 and AHTB2 redundantly regulate columella stem cell fate and patterning in the Arabidopsis root. The HD-Zip II TFs promote columella stem cell proliferation by acting as effectors of the FEZ/SMB circuit and, at the same time, by interfering with auxin signaling to counteract hormone-induced differentiation. Overall, our work shows that HD-Zip II TFs connect two opposing parallel inputs to fine-tune the balance between proliferation and differentiation in columella stem cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Células-Tronco/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Meristema/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
2.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891845

RESUMO

The generation of complex plant architectures depends on the interactions among different molecular regulatory networks that control the growth of cells within tissues, ultimately shaping the final morphological features of each structure. The regulatory networks underlying tissue growth and overall plant shapes are composed of intricate webs of transcriptional regulators which synergize or compete to regulate the expression of downstream targets. Transcriptional regulation is intimately linked to phytohormone networks as transcription factors (TFs) might act as effectors or regulators of hormone signaling pathways, further enhancing the capacity and flexibility of molecular networks in shaping plant architectures. Here, we focus on homeodomain-leucine zipper (HD-ZIP) proteins, a class of plant-specific transcriptional regulators, and review their molecular connections with hormonal networks in different developmental contexts. We discuss how HD-ZIP proteins emerge as key regulators of hormone action in plants and further highlight the fundamental role that HD-ZIP/hormone networks play in the control of the body plan and plant growth.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Zíper de Leucina , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Fatores de Transcrição/metabolismo , Redes Reguladoras de Genes , Transdução de Sinais , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
Development ; 145(11)2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29739839

RESUMO

The shoot apical meristem of higher plants continuously generates new tissues and organs through complex changes in growth rates and directions of its individual cells. Cell growth, which is driven by turgor pressure, largely depends on the cell walls, which allow cell expansion through synthesis and structural changes. A previous study revealed a major contribution of wall isotropy in organ emergence, through the disorganization of cortical microtubules. We show here that this disorganization is coupled with the transcriptional control of genes involved in wall remodelling. Some of these genes are induced when microtubules are disorganized and cells shift to isotropic growth. Mechanical modelling shows that this coupling has the potential to compensate for reduced cell expansion rates induced by the shift to isotropic growth. Reciprocally, cell wall loosening induced by different treatments or altered cell wall composition promotes a disruption of microtubule alignment. Our data thus indicate the existence of a regulatory module activated during organ outgrowth, linking microtubule arrangements to cell wall remodelling.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Meristema/crescimento & desenvolvimento , Microtúbulos/metabolismo , Fenômenos Biomecânicos/fisiologia , Proliferação de Células/fisiologia , Ácidos Indolacéticos/metabolismo , Meristema/genética , Microtúbulos/genética
4.
Development ; 140(10): 2118-29, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23578926

RESUMO

The Arabidopsis genome encodes ten Homeodomain-Leucine zipper (HD-Zip) II proteins. ARABIDOPSIS THALIANA HOMEOBOX 2 (ATHB2), HOMEOBOX ARABIDOPSIS THALIANA 1 (HAT1), HAT2, HAT3 and ATHB4 are regulated by changes in the red/far red light ratio that induce shade avoidance in most of the angiosperms. Here, we show that progressive loss of HAT3, ATHB4 and ATHB2 activity causes developmental defects from embryogenesis onwards in white light. Cotyledon development and number are altered in hat3 athb4 embryos, and these defects correlate with changes in auxin distribution and response. athb2 gain-of-function mutation and ATHB2 expression driven by its promoter in hat3 athb4 result in significant attenuation of phenotypes, thus demonstrating that ATHB2 is functionally redundant to HAT3 and ATHB4. In analogy to loss-of-function mutations in HD-Zip III genes, loss of HAT3 and ATHB4 results in organ polarity defects, whereas triple hat3 athb4 athb2 mutants develop one or two radialized cotyledons and lack an active shoot apical meristem (SAM). Consistent with overlapping expression pattern of HD-Zip II and HD-Zip III gene family members, bilateral symmetry and SAM defects are enhanced when hat3 athb4 is combined with mutations in PHABULOSA (PHB), PHAVOLUTA (PHV) or REVOLUTA (REV). Finally, we show that ATHB2 is part of a complex regulatory circuit directly involving both HD-Zip II and HD-Zip III proteins. Taken together, our study provides evidence that a genetic system consisting of HD-Zip II and HD-Zip III genes cooperates in establishing bilateral symmetry and patterning along the adaxial-abaxial axis in the embryo as well as in controlling SAM activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Meristema/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Genes de Plantas , Genoma de Planta , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Ácidos Indolacéticos/metabolismo , Zíper de Leucina/genética , Meristema/crescimento & desenvolvimento , Modelos Genéticos , Mutação , Fenótipo , Fenômenos Fisiológicos Vegetais , Brotos de Planta/metabolismo
5.
Plant Physiol ; 168(1): 292-306, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25783413

RESUMO

Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Secas , Proteínas de Ligação a RNA/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Inativação de Genes , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Solanum tuberosum/genética , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
6.
Development ; 139(18): 3402-12, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22912415

RESUMO

When a plant germinates in the soil, elongation of stem-like organs is enhanced whereas leaf and root growth is inhibited. How these differential growth responses are orchestrated by light and integrated at the organismal level to shape the plant remains to be elucidated. Here, we show that light signals through the master photomorphogenesis repressor COP1 to coordinate root and shoot growth in Arabidopsis. In the shoot, COP1 regulates shoot-to-root auxin transport by controlling the transcription of the auxin efflux carrier gene PIN-FORMED1 (PIN1), thus appropriately tuning shoot-derived auxin levels in the root. This in turn directly influences root elongation and adapts auxin transport and cell proliferation in the root apical meristem by modulating PIN1 and PIN2 intracellular distribution in the root in a COP1-dependent fashion, thus permitting a rapid and precise tuning of root growth to the light environment. Our data identify auxin as a long-distance signal in developmental adaptation to light and illustrate how spatially separated control mechanisms can converge on the same signaling system to coordinate development at the whole plant level.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/efeitos da radiação , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Membrana Transportadoras/genética , Raízes de Plantas/genética , Raízes de Plantas/efeitos da radiação , Brotos de Planta/genética , Brotos de Planta/efeitos da radiação , Ubiquitina-Proteína Ligases
7.
Plant Physiol ; 163(1): 331-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23893169

RESUMO

Shade-intolerant plants perceive the reduction in the ratio of red light (R) to far-red light (FR) as a warning of competition with neighboring vegetation and display a suite of developmental responses known as shade avoidance. In recent years, major progress has been made in understanding the molecular mechanisms underlying shade avoidance. Despite this, little is known about the dynamics of this response and the cascade of molecular events leading to plant adaptation to a low-R/FR environment. By combining genome-wide expression profiling and computational analyses, we show highly significant overlap between shade avoidance and deetiolation transcript profiles in Arabidopsis (Arabidopsis thaliana). The direction of the response was dissimilar at the early stages of shade avoidance and congruent at the late ones. This latter regulation requires LONG HYPOCOTYL IN FAR RED1/SLENDER IN CANOPY SHADE1 and phytochrome A, which function largely independently to negatively control shade avoidance. Gene network analysis highlights a subnetwork containing ELONGATED HYPOCOTYL5 (HY5), a master regulator of deetiolation, in the wild type and not in phytochrome A mutant upon prolonged low R/FR. Network analysis also highlights a direct connection between HY5 and HY5 HOMOLOG (HYH), a gene functionally implicated in the inhibition of hypocotyl elongation and known to be a direct target of the HY5 transcription factor. Kinetics analysis show that the HYH gene is indeed late induced by low R/FR and that its up-regulation depends on the action of HY5, since it does not occur in hy5 mutant. Therefore, we propose that one way plants adapt to a low-R/FR environment is by enhancing HY5 function.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/efeitos da radiação , Luz , Arabidopsis/genética , Arabidopsis/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genoma de Planta , Transdução de Sinal Luminoso , Análise de Sequência com Séries de Oligonucleotídeos
8.
J Exp Bot ; 64(9): 2579-92, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23585672

RESUMO

Plants continuously generate new tissues and organs throughout their life cycle, due to the activity of populations of specialized tissues containing stem cells called meristems. The shoot apical meristem (SAM) generates all the aboveground organs of the plant, including leaves and flowers, and plays a key role in plant survival and reproduction. Organ production at the SAM occurs following precise spatio-temporal patterns known as phyllotaxis. Because of the regularity of these patterns, phyllotaxis has been the subject of investigations from biologists, physicists, and mathematicians for several centuries. Both experimental and theoretical works have led to the idea that phyllotaxis results from a self-organizing process in the meristem via long-distance interactions between organs. In recent years, the phytohormone auxin has emerged not only as the central regulator of organogenesis at the SAM, but also as a major determinant of the self-organizing properties of phyllotaxis. Here, we discuss both the experimental and theoretical evidence for the implication of auxin in the control of organogenesis and self-organization of the SAM. We highlight how several layers of control acting at different scales contribute together to the function of the auxin signal in SAM dynamics. We also indicate a role for mechanical forces in the development of the SAM, supported by recent interdisciplinary studies.


Assuntos
Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/metabolismo , Transporte Biológico , Retroalimentação Fisiológica , Modelos Biológicos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Transdução de Sinais
9.
Philos Trans R Soc Lond B Biol Sci ; 372(1720)2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28348258

RESUMO

The shoot apical meristem (SAM) is a small population of stem cells that continuously generates organs and tissues. We will discuss here flower formation at the SAM, which involves a complex network of regulatory genes and signalling molecules. A major downstream target of this network is the extracellular matrix or cell wall, which is a local determinant for both growth rates and growth directions. We will discuss here a number of recent studies aimed at analysing the link between cell wall structure and molecular regulation. This has involved multidisciplinary approaches including quantitative imaging, molecular genetics, computational biology and biophysics. A scenario emerges where molecular networks impact on both cell wall anisotropy and synthesis, thus causing the rapid outgrowth of organs at specific locations. More specifically, this involves two interdependent processes: the activation of wall remodelling enzymes and changes in microtubule dynamics.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.


Assuntos
Flores/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Desenvolvimento Vegetal
10.
Curr Opin Plant Biol ; 28: 137-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26583832

RESUMO

The emergence of complex shapes during the development of plants is under the control of genetically determined molecular networks. Such regulatory networks, comprising hormones and transcription factors, regulate the collective behavior of cell growth within a tissue. Because all the cells within a tissue are linked together by the cell wall, their collective growth generates a good amount of mechanical stress. In the last few years a compelling amount of evidence has shown that growth-generated mechanical stress can feed back on plant developmental programs by modifying cell growth. This involves primarily responses from the microtubules and interaction with auxin transport and signaling. Here we discuss the most recent advances in the understanding of mechanical feedbacks in plant development.


Assuntos
Parede Celular/microbiologia , Desenvolvimento Vegetal , Estresse Mecânico , Fenômenos Biomecânicos , Retroalimentação Fisiológica
11.
Plant Signal Behav ; 10(11): e1000150, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26337646

RESUMO

The great complexity and plasticity of aerial plant shapes largely results from the activity of the shoot apical meristem (SAM), a group of undifferentiated cells which produces all the aboveground organs of the plant. Organogenesis at the SAM is regulated by the hormone auxin, which, through an integration of active transport, signalling and transcriptional regulation, determines the positional and temporal information dictating where, when, and how a new organ will be formed. At the cellular level, the information stemming from the regulatory molecular networks influences the growth of the cells within the tissue to give rise to the final organ shape. The growth of plant cells is mainly controlled by the cell wall, a rigid structure mainly made of polysaccharides, which surrounds the cells and links them together in an organismal continuum. Over the years, several lines of evidence have pointed at a role for the regulation of the elasticity of the cell wall, downstream of auxin action, in the formation of organs at the SAM. We have recently shown that auxin also induces a shift toward isotropic growth by modulating the organization of cortical microtubules in peripheral SAM cells, which promotes organ formation. Here, we discuss our results and identify new hypotheses to drive future research.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Morfogênese , Anisotropia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Meristema/citologia , Meristema/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Morfogênese/efeitos dos fármacos
12.
Elife ; 4: e07811, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26623515

RESUMO

The role of mechanical signals in cell identity determination remains poorly explored in tissues. Furthermore, because mechanical stress is widespread, mechanical signals are difficult to uncouple from biochemical-based transduction pathways. Here we focus on the homeobox gene SHOOT MERISTEMLESS (STM), a master regulator and marker of meristematic identity in Arabidopsis. We found that STM expression is quantitatively correlated to curvature in the saddle-shaped boundary domain of the shoot apical meristem. As tissue folding reflects the presence of mechanical stress, we test and demonstrate that STM expression is induced after micromechanical perturbations. We also show that STM expression in the boundary domain is required for organ separation. While STM expression correlates with auxin depletion in this domain, auxin distribution and STM expression can also be uncoupled. STM expression and boundary identity are thus strengthened through a synergy between auxin depletion and an auxin-independent mechanotransduction pathway at the shoot apical meristem.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/fisiologia , Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Meristema/fisiologia , Brotos de Planta/fisiologia , Estresse Mecânico , Regulação da Expressão Gênica de Plantas
13.
Curr Biol ; 24(6): R237-8, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24650911

RESUMO

Since plant cells cannot move relative to each other, plant organogenesis mainly depends on the strict coordination of cell growth and proliferation. Recent work suggests that this implies a subtle combination of biochemical and physical interactions between neighboring cells.


Assuntos
Arabidopsis/citologia , Arabidopsis/embriologia , Organogênese Vegetal/fisiologia , Raízes de Plantas/embriologia , Sementes/citologia
14.
Curr Biol ; 24(19): 2335-42, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25264254

RESUMO

To control morphogenesis, molecular regulatory networks have to interfere with the mechanical properties of the individual cells of developing organs and tissues, but how this is achieved is not well known. We study this issue here in the shoot meristem of higher plants, a group of undifferentiated cells where complex changes in growth rates and directions lead to the continuous formation of new organs. Here, we show that the plant hormone auxin plays an important role in this process via a dual, local effect on the extracellular matrix, the cell wall, which determines cell shape. Our study reveals that auxin not only causes a limited reduction in wall stiffness but also directly interferes with wall anisotropy via the regulation of cortical microtubule dynamics. We further show that to induce growth isotropy and organ outgrowth, auxin somehow interferes with the cortical microtubule-ordering activity of a network of proteins, including AUXIN BINDING PROTEIN 1 and KATANIN 1. Numerical simulations further indicate that the induced isotropy is sufficient to amplify the effects of the relatively minor changes in wall stiffness to promote organogenesis and the establishment of new growth axes in a robust manner.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Fenômenos Biomecânicos , Parede Celular/metabolismo , Katanina , Meristema/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Receptores de Superfície Celular/metabolismo
15.
Plant Signal Behav ; 8(3): e23355, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23333970

RESUMO

By being sessile, plants have evolved a remarkable capacity to perceive and respond to changes in environmental conditions throughout their life cycle. Light represents probably the most important environmental factor that impinge on plant development because, other than supplying the energy source for photosynthesis, it also provides seasonal and positional information that are essential for the plant survival and fitness. Changes in the light environment can dramatically alter plant morphogenesis, especially during the early phases of plant life, and a compelling amount of evidence indicates that light-mediated changes in auxin homeostasis are central in these processes. Auxin exerts its morphogenetic action through instructive hormone gradients that drive developmental programs of plants. Such gradients are formed and maintained via an accurate control on directional auxin transport. This review summarizes the recent advances in understanding the influence of the light environment on polar auxin transport.


Assuntos
Arabidopsis/metabolismo , Polaridade Celular , Ácidos Indolacéticos/metabolismo , Luz , Desenvolvimento Vegetal , Arabidopsis/fisiologia , Transporte Biológico , Transdução de Sinais
16.
Plant Signal Behav ; 3(2): 137-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19704735

RESUMO

A plant growing in the field has the unique ability to sense the presence of other plants growing near by and adjust its growth rate accordingly. This ability to detect neighbors, which is referred to as shade avoidance response, is mediated by members of the phytochrome family which detect light in the red (R) and far-red (FR) region of the spectrum. Work done by several laboratories has shown that low R/FR provides the signal for shade avoidance response during which the elongation of stem-like organs occurs at the expense of leaf development. However, the mechanism by which the low R/FR signal is transduced to attenuate leaf development has remained largely unknown. In the August issue of Genes and Development, we have shown that low R/FR rapidly and transiently arrests the growth of the leaf primordium. By exploiting mutant analysis in combination with genome wide expression profiling, we have identified a novel regulatory circuit underlying plant response to canopy shade. Together, the data demonstrate that the growth arrest induced by low R/FR depends on auxin-induced cytokinin breakdown in pre-procambial cells of developing primordia. In this addendum, we discuss open questions to be addressed in the future.

17.
Genes Dev ; 21(15): 1863-8, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17671088

RESUMO

A plant grown under canopies perceives the reduction in the ratio of red (R) to far-red (FR) light as a warning of competition, and enhances elongation growth in an attempt to overgrow its neighbors. Here, we report that the same low R/FR signal that induces hypocotyl elongation also triggers a rapid arrest of leaf primordium growth, ensuring that plant resources are redirected into extension growth. The growth arrest induced by low R/FR depends on auxin-induced cytokinin breakdown in incipient vein cells of developing primordia, thus demonstrating the existence of a previously unrecognized regulatory circuit underlying plant response to canopy shade.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Oxirredutases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Reporter , Glucuronidase/genética , Oxirredutases/genética , Fotobiologia , Folhas de Planta/efeitos da radiação , Plantas Geneticamente Modificadas , Transdução de Sinais
18.
Genes Dev ; 19(23): 2811-5, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16322556

RESUMO

Plants grown under dense canopies perceive through the phytochrome system a reduction in the ratio of red to far-red light as a warning of competition, and this triggers a series of morphological changes to avoid shade. Several phytochrome signaling intermediates acting as positive regulators of accelerated elongation growth and induction of flowering in shade avoidance have been identified. Here we report that a negative regulatory mechanism ensures that in the presence of far-red-rich light an exaggerated plant response does not occur. Strikingly, this unpredicted negative regulatory mechanism is centrally involved in the attenuation of virtually all plant responses to canopy shade.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Luz , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/fisiologia , Proteínas de Ligação a DNA/fisiologia , Ecossistema , Proteínas de Homeodomínio/fisiologia , Proteínas Nucleares/fisiologia , Fitocromo/fisiologia , Transdução de Sinais , Fatores de Transcrição/fisiologia , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA