Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(2): 025506, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-32987380

RESUMO

The utilization of nanoparticle-polymer bead hybrid nanostructures as a SERS substrate depends on the control of the deposition, density, and distribution of nanoparticles on the bead surface. Here we demonstrate the fabrication of a large area SERS substate via a two- step DNA mediated assembly of gold nanoprisms and polystyrene (PS) beads into a large ensemble of beads that are densely coated with nanoprisms. First, nanoprisms are loaded on PS beads through DNA hybridization. The close packed arrangement of anisotropic nanoprisms in different orientations on a bead surface results in a plasmonic substrate with a variable nanogap size ranging 1-20 nm. Nanoprisms-coated beads are then assembled into a large stack or aggregate of beads using a DNA-induced crystallization approach. Each aggregate consists of 20-50 nanoprisms-coated beads, leading to the formation a large area of three-dimensional SERS substrate with a high-density of hot spots for SERS enhancement. An excellent enhancement factor (EF) of [Formula: see text] and a very high detection sensitivity (up to 10-10 M) are observed for the analysis of a probe molecule (Methylene blue) using the SERS substrate.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Poliestirenos/química , Nanopartículas Metálicas/ultraestrutura , Azul de Metileno/análise , Nanotecnologia/métodos , Análise Espectral Raman/métodos
2.
Phys Chem Chem Phys ; 23(44): 25256-25263, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34734598

RESUMO

Colloidal crystallization using DNA provides a robust method for fabricating highly programmable nanoparticle superstructures with collective plasmonic properties. Here, we report on the DNA-guided fabrication of 3D plasmonic aggregates from polydisperse gold nanoprisms. We first construct 1D crystals via DNA-induced and shape-directed face-to-face assembly of anisotropic gold nanoprisms. Using the near-Tm thermal annealing approach that promotes long-range DNA-induced interaction and ordering, we then assemble 1D nanoprism crystals into a 3D nanoprism aggregate that exhibits a polycrystalline morphology with nanoscale ordering and microscale dimensions. The presence of closely packed nanoprism arrays over a large area gives rise to strong near-field plasmonic coupling and generates a high density of plasmonic hot spots within the 3D nanoprism aggregates that exhibit excellent surface-enhanced Raman scattering performance. The plasmonic 3D nanoprism aggregates demonstrate significant SERS enhancement (<106), and low detection limits (10-9M) with good sample-to-sample reproducibility (CV ∼ only 5.6%) for SERS analysis of the probe molecule, methylene blue. These findings highlight the potential of 3D anisotropic nanoparticle aggregates as functional plasmonic nanoarchitectures that could find applications in sensing, photonics, optoelectronics and lasing.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
3.
Proc Natl Acad Sci U S A ; 113(50): 14324-14329, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911781

RESUMO

Stilbenes are diphenyl ethene compounds produced naturally in a wide variety of plant species and some bacteria. Stilbenes are also derived from lignin during kraft pulping. Stilbene cleavage oxygenases (SCOs) cleave the central double bond of stilbenes, forming two phenolic aldehydes. Here, we report the structure of an SCO. The X-ray structure of NOV1 from Novosphingobium aromaticivorans was determined in complex with its substrate resveratrol (1.89 Å), its product vanillin (1.75 Å), and without any bound ligand (1.61 Å). The enzyme is a seven-bladed ß-propeller with an iron cofactor coordinated by four histidines. In all three structures, dioxygen is observed bound to the iron in a side-on fashion. These structures, along with EPR analysis, allow us to propose a mechanism in which a ferric-superoxide reacts with substrate activated by deprotonation of a phenol group at position 4 of the substrate, which allows movement of electron density toward the central double bond and thus facilitates reaction with the ferric superoxide electrophile. Correspondingly, NOV1 cleaves a wide range of other stilbene-like compounds with a 4'-OH group, offering potential in processing some solubilized fragments of lignin into monomer aromatic compounds.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dioxigenases/química , Dioxigenases/metabolismo , Estilbenos/metabolismo , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Dioxigenases/genética , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resveratrol , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 110(18): 7182-7, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589840

RESUMO

The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world's future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture's environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma.


Assuntos
Bioquímica/métodos , Biomassa , Glucosidases/metabolismo , Amido/metabolismo , Amilose/metabolismo , Celulose/metabolismo , Clostridium/enzimologia , Alimentos , Glucanos/metabolismo , Glucosidases/química , Hidrólise , Fenômenos Magnéticos , Mutação/genética , Nanopartículas/ultraestrutura , Fosforilases/química , Filogenia , Solanum tuberosum/enzimologia , Homologia Estrutural de Proteína , Thermotoga maritima/enzimologia
5.
Plant Biotechnol J ; 13(9): 1241-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25583257

RESUMO

Lignin confers recalcitrance to plant biomass used as feedstocks in agro-processing industries or as source of renewable sugars for the production of bioproducts. The metabolic steps for the synthesis of lignin building blocks belong to the shikimate and phenylpropanoid pathways. Genetic engineering efforts to reduce lignin content typically employ gene knockout or gene silencing techniques to constitutively repress one of these metabolic pathways. Recently, new strategies have emerged offering better spatiotemporal control of lignin deposition, including the expression of enzymes that interfere with the normal process for cell wall lignification. In this study, we report that expression of a 3-dehydroshikimate dehydratase (QsuB from Corynebacterium glutamicum) reduces lignin deposition in Arabidopsis cell walls. QsuB was targeted to the plastids to convert 3-dehydroshikimate - an intermediate of the shikimate pathway - into protocatechuate. Compared to wild-type plants, lines expressing QsuB contain higher amounts of protocatechuate, p-coumarate, p-coumaraldehyde and p-coumaryl alcohol, and lower amounts of coniferaldehyde, coniferyl alcohol, sinapaldehyde and sinapyl alcohol. 2D-NMR spectroscopy and pyrolysis-gas chromatography/mass spectrometry (pyro-GC/MS) reveal an increase of p-hydroxyphenyl units and a reduction of guaiacyl units in the lignin of QsuB lines. Size-exclusion chromatography indicates a lower degree of lignin polymerization in the transgenic lines. Therefore, our data show that the expression of QsuB primarily affects the lignin biosynthetic pathway. Finally, biomass from these lines exhibits more than a twofold improvement in saccharification efficiency. We conclude that the expression of QsuB in plants, in combination with specific promoters, is a promising gain-of-function strategy for spatiotemporal reduction of lignin in plant biomass.


Assuntos
Metabolismo dos Carboidratos , Hidroliases/metabolismo , Lignina/metabolismo , Arabidopsis/química , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Biomassa , Parede Celular/metabolismo , Corynebacterium glutamicum/enzimologia , Engenharia Genética/métodos , Lignina/análise , Lignina/biossíntese , Redes e Vias Metabólicas
7.
Appl Environ Microbiol ; 80(23): 7423-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25261509

RESUMO

Microbial communities that deconstruct plant biomass have broad relevance in biofuel production and global carbon cycling. Biomass pretreatments reduce plant biomass recalcitrance for increased efficiency of enzymatic hydrolysis. We exploited these chemical pretreatments to study how thermophilic bacterial consortia adapt to deconstruct switchgrass (SG) biomass of various compositions. Microbial communities were adapted to untreated, ammonium fiber expansion (AFEX)-pretreated, and ionic-liquid (IL)-pretreated SG under aerobic, thermophilic conditions using green waste compost as the inoculum to study biomass deconstruction by microbial consortia. After microbial cultivation, gravimetric analysis of the residual biomass demonstrated that both AFEX and IL pretreatment enhanced the deconstruction of the SG biomass approximately 2-fold. Two-dimensional nuclear magnetic resonance (2D-NMR) experiments and acetyl bromide-reactive-lignin analysis indicated that polysaccharide hydrolysis was the dominant process occurring during microbial biomass deconstruction, and lignin remaining in the residual biomass was largely unmodified. Small-subunit (SSU) rRNA gene amplicon libraries revealed that although the dominant taxa across these chemical pretreatments were consistently represented by members of the Firmicutes, the Bacteroidetes, and Deinococcus-Thermus, the abundance of selected operational taxonomic units (OTUs) varied, suggesting adaptations to the different substrates. Combining the observations of differences in the community structure and the chemical and physical structure of the biomass, we hypothesize specific roles for individual community members in biomass deconstruction.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biota , Consórcios Microbianos , Panicum/metabolismo , Aerobiose , Bactérias/classificação , Biomassa , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Lignina/metabolismo , Dados de Sequência Molecular , Polissacarídeos/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
8.
Appl Environ Microbiol ; 79(14): 4433-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23686271

RESUMO

Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H2 and CO2 under aerobic conditions. Under conditions of nutrient imbalance, R. eutropha produces copious amounts of poly[(R)-3-hydroxybutyrate] (PHB). Its ability to utilize CO2 as a sole carbon source renders it an interesting new candidate host for the production of renewable liquid transportation fuels. We engineered R. eutropha for the production of fatty acid-derived, diesel-range methyl ketones. Modifications engineered in R. eutropha included overexpression of a cytoplasmic version of the TesA thioesterase, which led to a substantial (>150-fold) increase in fatty acid titer under certain conditions. In addition, deletion of two putative ß-oxidation operons and heterologous expression of three genes (the acyl coenzyme A oxidase gene from Micrococcus luteus and fadB and fadM from Escherichia coli) led to the production of 50 to 65 mg/liter of diesel-range methyl ketones under heterotrophic growth conditions and 50 to 180 mg/liter under chemolithoautotrophic growth conditions (with CO2 and H2 as the sole carbon source and electron donor, respectively). Induction of the methyl ketone pathway diverted substantial carbon flux away from PHB biosynthesis and appeared to enhance carbon flux through the pathway for biosynthesis of fatty acids, which are the precursors of methyl ketones.


Assuntos
Proteínas de Bactérias/genética , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidroxibutiratos/metabolismo , Cetonas/metabolismo , Poliésteres/metabolismo , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Crescimento Quimioautotrófico , Escherichia coli/genética , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Engenharia Genética , Processos Heterotróficos , Micrococcus luteus/genética , Oxirredução
9.
ACS Omega ; 8(49): 46560-46568, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107952

RESUMO

The one-pot conversion of furfuryl alcohol (FA) into GVL was investigated over the sol-gel-synthesized Al2O3-SiO2 (AlSi) catalysts with various Al2O3 loadings (0.2-10 wt %) and commercial zeolites including MFI-1, H-ZSM5, H-beta, and HY-15 in a batch reactor under mild reaction conditions (130 °C, 1 bar N2, and 15-120 min). The reaction pathways depend largely on the acid properties of the catalysts, especially the types of Bronsted (B) and Lewis (L) acid sites. A tandem alcoholysis/hydrogenation/cyclization sequence is dominant on the AlSi catalysts (Al ≥ 4%) and all the zeolites except MFI-1, resulting in complete conversion of FA and GVL with an yield 64-75% with IPL as the major side-product, regardless of the differences in their B/L ratios 0.06-1.35. In the absence of B acid sites (i.e., 0.2% AlSi and MFI-1 catalysts), FA could be straightforwardly converted into GVL on the weak Lewis acid sites from the isolated silanol groups using 2-propanol as a hydrogen source. The AlSi catalysts are promising tunable catalysts for FA conversion with good recyclability.

10.
Appl Environ Microbiol ; 78(5): 1437-44, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22210210

RESUMO

A cellulosome-microbe complex was assembled ex vivo on the surface of Bacillus subtilis displaying a miniscaffoldin that can bind with three dockerin-containing cellulase components: the endoglucanase Cel5, the processive endoglucanase Cel9, and the cellobiohydrolase Cel48. The hydrolysis performances of the synthetic cellulosome bound to living cells, the synthetic cellulosome, a noncomplexed cellulase mixture with the same catalytic components, and a commercial fungal enzyme mixture were investigated on low-accessibility recalcitrant Avicel and high-accessibility regenerated amorphous cellulose (RAC). The cell-bound cellulosome exhibited 4.5- and 2.3-fold-higher hydrolysis ability than cell-free cellulosome on Avicel and RAC, respectively. The cellulosome-microbe synergy was not completely explained by the removal of hydrolysis products from the bulk fermentation broth by free-living cells and appeared to be due to substrate channeling of long-chain hydrolysis products assimilated by the adjacent cells located in the boundary layer. Our results implied that long-chain hydrolysis products in the boundary layer may inhibit cellulosome activity to a greater extent than the short-chain products in bulk phase. The findings that cell-bound cellulosome expedited the microbial cellulose utilization rate by 2.3- to 4.5-fold would help in the development of better consolidated bioprocessing microorganisms (e.g., B. subtilis) that can hydrolyze recalcitrant cellulose rapidly at low secretory cellulase levels.


Assuntos
Bacillus subtilis/metabolismo , Celulose/metabolismo , Celulossomas/metabolismo , Bacillus subtilis/genética , Expressão Gênica , Hidrólise , Engenharia Metabólica
11.
Metab Eng ; 13(4): 364-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21549854

RESUMO

Although intensive efforts have been made to create recombinant cellulolytic microorganisms, real recombinant cellulose-utilizing microorganisms that can produce sufficient secretory active cellulase, hydrolyze cellulose, and utilize released soluble sugars for supporting both cell growth and cellulase synthesis without any other organic nutrient (e.g., yeast extract, peptone, amino acids), are not available. Here we demonstrated that over-expression of Bacillus subtilis endoglucanase BsCel5 enabled B. subtilis to grow on solid cellulosic materials as the sole carbon source for the first time. Furthermore, two-round directed evolution was conducted to increase specific activity of BsCel5 on regenerated amorphous cellulose (RAC) and enhance its expression/secretion level in B. subtilis. To increase lactate yield, the alpha-acetolactate synthase gene (alsS) in the 2,3-butanediol pathway was knocked out. In the chemically defined minimal M9/RAC medium, B. subtilis XZ7(pBscel5-MT2C) strain (ΔalsS), which expressed a BsCel5 mutant MT2C, was able to hydrolyze RAC with cellulose digestibility of 74% and produced about 3.1g/L lactate with a yield of 60% of the theoretical maximum. When 0.1% (w/v) yeast extract was added in the M9/RAC medium, cellulose digestibility and lactate yield were enhanced to 92% and 63% of the theoretical maximum, respectively. The recombinant industrially safe cellulolytic B. subtilis would be a promising consolidated bioprocessing platform for low-cost production of biocommodities from cellulosic materials.


Assuntos
Bacillus subtilis , Celulose/metabolismo , Ácido Láctico/biossíntese , Organismos Geneticamente Modificados , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Celulase/biossíntese , Celulase/genética , Celulose/farmacologia , Evolução Molecular Direcionada , Técnicas de Silenciamento de Genes , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Organismos Geneticamente Modificados/metabolismo
12.
New Phytol ; 192(3): 611-25, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21790609

RESUMO

• The lignin content of feedstock has been proposed as one key agronomic trait impacting biofuel production from lignocellulosic biomass. 4-Coumarate:coenzyme A ligase (4CL) is one of the key enzymes involved in the monolignol biosynthethic pathway. • Two homologous 4CL genes, Pv4CL1 and Pv4CL2, were identified in switchgrass (Panicum virgatum) through phylogenetic analysis. Gene expression patterns and enzymatic activity assays suggested that Pv4CL1 is involved in monolignol biosynthesis. Stable transgenic plants were obtained with Pv4CL1 down-regulated. • RNA interference of Pv4CL1 reduced extractable 4CL activity by 80%, leading to a reduction in lignin content with decreased guaiacyl unit composition. Altered lignification patterns in the stems of RNAi transgenic plants were observed with phloroglucinol-HCl staining. The transgenic plants also had uncompromised biomass yields. After dilute acid pretreatment, the low lignin transgenic biomass had significantly increased cellulose hydrolysis (saccharification) efficiency. • The results demonstrate that Pv4CL1, but not Pv4CL2, is the key 4CL isozyme involved in lignin biosynthesis, and reducing lignin content in switchgrass biomass by silencing Pv4CL1 can remarkably increase the efficiency of fermentable sugar release for biofuel production.


Assuntos
Biocombustíveis/análise , Carboidratos/biossíntese , Coenzima A Ligases/genética , Fermentação/genética , Inativação Gênica , Lignina/metabolismo , Panicum/enzimologia , Biomassa , Parede Celular/metabolismo , Segregação de Cromossomos/genética , Coenzima A Ligases/metabolismo , Ácidos Cumáricos/metabolismo , Cruzamentos Genéticos , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Cinética , Modelos Biológicos , Panicum/citologia , Panicum/genética , Panicum/crescimento & desenvolvimento , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Supressão Genética
13.
Biotechnol Bioeng ; 108(3): 521-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20967803

RESUMO

The switchgrass (SG) samples pretreated by cellulose solvent- and organic solvent-based lignocellulose fractionation were characterized by enzymatic hydrolysis, substrate accessibility assay, scanning electron microscopy, X-ray diffraction (XRD), cross polarization/magic angle spinning (CP/MAS) (13)C nuclear magnetic resonance (NMR), and Fourier transform infrared spectroscopy (FTIR). Glucan digestibility of the pretreated SG was 89% at hour 36 at one filter paper unit of cellulase per gram of glucan. Crystallinity index (CrI) of pure cellulosic materials and SG before and after cellulose solvent-based pretreatment were determined by XRD and NMR. CrI values varied greatly depending on measurement techniques, calculation approaches, and sample drying conditions, suggesting that the effects of CrI data obtained from dried samples on enzymatic hydrolysis of hydrated cellulosic materials should be interpreted with caution. Fast hydrolysis rates and high glucan digestibilities for pretreated SG were mainly attributed to a 16.3-fold increase in cellulose accessibility to cellulase from 0.49 to 8.0 m(2)/g biomass, because the highly ordered hydrogen-bonding networks in cellulose fibers of biomass were broken through cellulose dissolution in a cellulose solvent, as evidenced by CP/MAS (13)C-NMR and FTIR.


Assuntos
Biomassa , Biotecnologia/métodos , Celulose/química , Panicum/química , Panicum/efeitos dos fármacos , Solventes/química , Celulose/metabolismo , Celulose/ultraestrutura , Fracionamento Químico , Hidrólise , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Panicum/metabolismo , Panicum/ultraestrutura , Solventes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Biotechnol Bioeng ; 108(1): 22-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20812260

RESUMO

While many pretreatments attempt to improve the enzymatic digestibility of biomass by removing lignin, this study shows that improving the surface area accessible to cellulase is a more important factor for achieving a high sugar yield. Here we compared the pretreatment of switchgrass by two methods, cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) and soaking in aqueous ammonia (SAA). Following pretreatment, enzymatic hydrolysis was conducted at two cellulase loadings, 15 filter paper units (FPU)/g glucan and 3 FPU/g glucan, with and without BSA blocking of lignin absorption sites. The hydrolysis results showed that the lignin remaining after SAA had a significant negative effect on cellulase performance, despite the high level of delignification achieved with this pretreatment. No negative effect due to lignin was detected for COSLIF-treated substrate. SEM micrographs, XRD crystallinity measurements, and cellulose accessibility to cellulase (CAC) determinations confirmed that COSLIF fully disrupted the cell wall structure, resulting in a 16-fold increase in CAC, while SAA caused a 1.4-fold CAC increase. A surface plot relating the lignin removal, CAC, and digestibility of numerous samples (both pure cellulosic substrates and lignocellulosic materials pretreated by several methods) was also developed to better understand the relative impacts of delignification and CAC on glucan digestibility.


Assuntos
Biotecnologia/métodos , Celulases/metabolismo , Lignina/metabolismo , Amônia/metabolismo , Biomassa , Panicum/química , Panicum/metabolismo , Soroalbumina Bovina/metabolismo , Solventes , Trichoderma/enzimologia
15.
Dalton Trans ; 50(46): 17390-17396, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34792048

RESUMO

Catalytic pathways to produce high carbon number compounds from benzyl phenyl ether require multiple steps to break the aryl etheric carbon-oxygen bonds; these steps are followed by energy-intensive processes to remove oxygen atoms and/or carbon-carbon coupling. Here, we show an upgrading strategy to transform benzyl phenyl ether into large phenolic (C12-C22) compounds by a one-step C-O breaking and C-C coupling catalyzed by metal triflates under a mild condition (100 °C and 1 bar). Hafnium triflate was the most selective for the desired products. In addition, we measured the effect of solvent polarity on the catalytic performance. Solvents with a polarity index of less than 3.4 promoted the catalytic activity and selectivity to C12-C22 phenolic products. These C12-C22 phenolic compounds have potential applications for phenol-formaldehyde polymers, diesel/jet fuels, and liquid organic hydrogen carriers.

16.
Appl Microbiol Biotechnol ; 86(2): 525-33, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19830421

RESUMO

Family 48 glycoside hydrolases (cellobiohydrolases) are among the most important cellulase components for crystalline cellulose hydrolysis mediated by cellulolytic bacteria. Open reading frame (Cphy_3368) of Clostridium phytofermentans ISDg encodes a putative family 48 glycoside hydrolase (CpCel48) with a family 3 cellulose-binding module. CpCel48 was successfully expressed as two soluble intracellular forms with or without a C-terminal His-tag in Escherichia coli and as a secretory active form in Bacillus subtilis. It was found that calcium ion enhanced activity and thermostability of the enzyme. CpCel48 had high activities of 15.1 U micromol(-1) on Avicel and 35.9 U micromol(-1) on regenerated amorphous cellulose (RAC) with cellobiose as a main product and cellotriose and cellotetraose as by-products. By contrast, it had very weak activities on soluble cellulose derivatives (e.g., carboxymethyl cellulose (CMC)) and did not significantly decrease the viscosity of the CMC solution. Cellotetraose was the smallest oligosaccharide substrate for CpCel48. Since processivity is a key characteristic for cellobiohydrolases, the new initial false/right attack model was developed for estimation of processivity by considering the enzyme's substrate specificity, the crystalline structure of homologous Cel48 enzymes, and the configuration of cellulose chains. The processivities of CpCel48 on Avicel and RAC were estimated to be approximately 3.5 and 6.0, respectively. Heterologous expression of secretory active cellobiohydrolase in B. subtilis is an important step for developing recombinant cellulolytic B. subtilis strains for low-cost production of advanced biofuels from cellulosic materials in a single step.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Clostridium/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Cálcio/metabolismo , Celobiose/metabolismo , Celulose/análogos & derivados , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/química , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Especificidade por Substrato , Temperatura , Tetroses/metabolismo
17.
Nanomaterials (Basel) ; 10(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321839

RESUMO

The development of the concrete industry is always accompanied by some environmental issues such as global warming and energy consumption. Under this circumstance, the application of nanocellulose in cementitious materials is attracting more and more attention in recent years not only because of its renewability and sustainability but also because of its unique properties. To trace the research progress and provide some guidance for future research, the application of nanocellulose to cementitious materials is reviewed. Specifically, the effects of cellulose nanocrystal (CNC), cellulose nanofibril (CNF), bacterial cellulose (BC), and cellulose filament (CF) on the physical and fresh properties, hydration, mechanical properties, microstructure, rheology, shrinkage, and durability of cementitious materials are summarized. It can be seen that the type, dosage, and dispersion of nanocellulose, and even the cementitious matrix type can lead to different results. Moreover, in this review, some unexplored topics are highlighted and remain to be further studied. Lastly, the major challenge of nanocellulose dispersion, related to the effectiveness of nanocellulose in cementitious materials, is examined in detail.

18.
Biotechnol Bioeng ; 103(4): 715-24, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19337984

RESUMO

Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only approximately 60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m(2)/g, nearly twice that of the DA-pretreated biomass (5.89 m(2)/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility.


Assuntos
Ácidos , Celulase/metabolismo , Etanol/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Fermentação , Hidrólise , Lignina/metabolismo , Solventes , Zea mays/química
19.
Analyst ; 134(11): 2267-72, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19838414

RESUMO

Effective hydrolysis of pretreated lignocellulose mediated by cellulase requires an in-depth understanding of cellulase adsorption and desorption. Here we developed a simple method for determining the adsorbed cellulase on cellulosic materials or pretreated lignocellulose, which involves (i) hydrolysis of adsorbed cellulase in the presence of 10 M of NaOH at 121 degrees C for 20 min, and (ii) the ninhydrin assay for the amino acids released from the hydrolyzed cellulase. The major lignocellulosic components (i.e., cellulose, hemicellulose, and lignin) did not interfere with the ninhydrin assay. A number of cellulase desorption methods were investigated: pH change as well as the use of detergents, high salt solution, and polyhydric alcohols. The pH adjustment to 13.0 and the elution by 72% ethylene glycol at neutral pH were among the most efficient approaches for desorbing the adsorbed cellulase. For the recycling of active cellulase, a modest pH adjustment to 10.0 may be a low-cost viable method to desorb active cellulase. It was found that more than 90% of cellulase for hydrolysis of the pretreated corn stover could be recycled by washing at pH 10.0.


Assuntos
Biomassa , Celulase/análise , Celulase/química , Lignina/química , Adsorção , Aminoácidos/metabolismo , Soluções Tampão , Celulase/metabolismo , Detergentes/química , Concentração de Íons de Hidrogênio , Hidrólise , Lignina/metabolismo , Ninidrina/química , Sais/química
20.
Biotechnol Biofuels ; 10: 72, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344647

RESUMO

BACKGROUND: Pretreatment is necessary to reduce biomass recalcitrance and enhance the efficiency of enzymatic saccharification for biofuel production. Ionic liquid (IL) pretreatment has gained a significant interest as a pretreatment process that can reduce cellulose crystallinity and remove lignin, key factors that govern enzyme accessibility. There are several challenges that need to be addressed for IL pretreatment to become viable for commercialization, including IL cost and recyclability. In addition, it is unclear whether ILs can maintain process performance when utilizing low-cost, low-quality biomass feedstocks such as the paper fraction of municipal solid waste (MSW), which are readily available in high quantities. One approach to potentially reduce IL cost is to use a blend of ILs at different concentrations in aqueous mixtures. Herein, we describe 14 IL-water systems with mixtures of 1-ethyl-3-ethylimidazolium acetate ([C2C1Im][OAc]), 1-butyl-3-ethylimidazolium acetate ([C4C1Im][OAc]), and water that were used to pretreat MSW blended with agave bagasse (AGB). The detailed analysis of IL recycling in terms of sugar yields of pretreated biomass and IL stability was examined. RESULTS: Both biomass types (AGB and MSW) were efficiently disrupted by IL pretreatment. The pretreatment efficiency of [C2C1Im][OAc] and [C4C1Im][OAc] decreased when mixed with water above 40%. The AGB/MSW (1:1) blend demonstrated a glucan conversion of 94.1 and 83.0% using IL systems with ~10 and ~40% water content, respectively. Chemical structures of fresh ILs and recycle ILs presented strong similarities observed by FTIR and 1H-NMR spectroscopy. The glucan and xylan hydrolysis yields obtained from recycled IL exhibited a slight decrease in pretreatment efficiency (less than 10% in terms of hydrolysis yields compared to that of fresh IL), and a decrease in cellulose crystallinity was observed. CONCLUSIONS: Our results demonstrated that mixing ILs such as [C2C1Im][OAc] and [C4C1Im][OAc] and blending the paper fraction of MSW with agricultural residues, such as AGB, may contribute to lower the production costs while maintaining high sugar yields. Recycled IL-water mixtures provided comparable results to that of fresh ILs. Both of these results offer the potential of reducing the production costs of sugars and biofuels at biorefineries as compared to more conventional IL conversion technologies.Graphical abstractSchematic of ionic liquid (IL) pretreatment of agave bagasse (AB) and paper-rich fraction of municipal solid waste (MSW).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA