Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
New Phytol ; 242(5): 2369-2379, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38186378

RESUMO

Evergreen broad-leaved forests (EBLFs) are dominated by a monsoon climate and form a distinct biome in East Asia with notably high biodiversity. However, the origin and evolution of East Asian EBLFs (EAEBLFs) remain elusive despite the estimation of divergence times for various representative lineages. Using 72 selected generic-level characteristic lineages, we constructed an integrated lineage accumulation rate (LAR) curve based on their crown ages. According to the crown-based LAR, the EAEBLF origin was identified at least as the early Oligocene (c. 31.8 million years ago (Ma)). The accumulation rate of the characteristic genera peaked at 25.2 and 6.4 Ma, coinciding with the two intensification periods of the Asian monsoon at the Oligocene - Miocene and the Miocene - Pliocene boundaries, respectively. Moreover, the LAR was highly correlated with precipitation in the EAEBLF region and negatively to global temperature, as revealed through time-lag cross-correlation analyses. An early Oligocene origin is suggested for EAEBLFs, bridging the gap between paleobotanical and molecular dating studies and solving conflicts among previous estimates based on individual representative lineages. The strong correlation between the crown-based LAR and the precipitation brought about by the Asian monsoon emphasizes its irreplaceable role in the origin and development of EAEBLFs.


Assuntos
Evolução Biológica , Florestas , Ásia Oriental , Filogenia , Árvores/fisiologia , Biodiversidade , Folhas de Planta/anatomia & histologia , População do Leste Asiático
2.
New Phytol ; 241(3): 1348-1360, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029781

RESUMO

Flowers are the complex and highly diverse reproductive structures of angiosperms. Because of their role in sexual reproduction, the evolution of flowers is tightly linked to angiosperm speciation and diversification. Accordingly, the quantification of floral morphological diversity (disparity) among angiosperm subgroups and through time may give important insights into the evolutionary history of angiosperms as a whole. Based on a comprehensive dataset focusing on 30 characters describing floral structure across angiosperms, we used 1201 extant and 121 fossil flowers to measure floral disparity and explore patterns of floral evolution through time and across lineages. We found that angiosperms reached their highest floral disparity in the Early Cretaceous. However, decreasing disparity toward the present likely has not precluded the innovation of other complex traits at other morphological levels, which likely played a key role in the outstanding angiosperm species richness. Angiosperms occupy specific regions of the theoretical morphospace, indicating that only a portion of the possible floral trait combinations is observed in nature. The ANA grade, the magnoliids, and the early-eudicot grade occupy large areas of the morphospace (higher disparity), whereas nested groups occupy narrower regions (lower disparity).


Assuntos
Magnoliopsida , Filogenia , Magnoliopsida/genética , Flores/anatomia & histologia , Fósseis , Reprodução , Evolução Biológica
3.
Syst Biol ; 72(6): 1337-1356, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37695237

RESUMO

Determining the link between genomic and phenotypic change is a fundamental goal in evolutionary biology. Insights into this link can be gained by using a phylogenetic approach to test for correlations between rates of molecular and morphological evolution. However, there has been persistent uncertainty about the relationship between these rates, partly because conflicting results have been obtained using various methods that have not been examined in detail. We carried out a simulation study to evaluate the performance of 5 statistical methods for detecting correlated rates of evolution. Our simulations explored the evolution of molecular sequences and morphological characters under a range of conditions. Of the methods tested, Bayesian relaxed-clock estimation of branch rates was able to detect correlated rates of evolution correctly in the largest number of cases. This was followed by correlations of root-to-tip distances, Bayesian model selection, independent sister-pairs contrasts, and likelihood-based model selection. As expected, the power to detect correlated rates increased with the amount of data, both in terms of tree size and number of morphological characters. Likewise, greater among-lineage rate variation in the data led to improved performance of all 5 methods, particularly for Bayesian relaxed-clock analysis when the rate model was mismatched. We then applied these methods to a data set from flowering plants and did not find evidence of a correlation in evolutionary rates between genomic data and morphological characters. The results of our study have practical implications for phylogenetic analyses of combined molecular and morphological data sets, and highlight the conditions under which the links between genomic and phenotypic rates of evolution can be evaluated quantitatively.


Assuntos
Evolução Molecular , Genômica , Filogenia , Teorema de Bayes , Funções Verossimilhança , Simulação por Computador
4.
Syst Biol ; 72(4): 837-855, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-36995161

RESUMO

Fossils are essential to infer past evolutionary processes. The assignment of fossils to extant clades has traditionally relied on morphological similarity and on apomorphies shared with extant taxa. The use of explicit phylogenetic analyses to establish fossil affinities has so far remained limited. In this study, we built a comprehensive framework to investigate the phylogenetic placement of 24 exceptionally preserved fossil flowers. For this, we assembled a new species-level data set of 30 floral traits for 1201 extant species that were sampled to capture the stem and crown nodes of all angiosperm families. We explored multiple analytical approaches to integrate the fossils into the phylogeny, including different phylogenetic estimation methods, topological-constrained analyses, and combining molecular and morphological data of extant and fossil species. Our results were widely consistent across approaches and showed minor differences in the support of fossils at different phylogenetic positions. The placement of some fossils agrees with previously suggested relationships, but for others, a new placement is inferred. We also identified fossils that are well supported within particular extant families, whereas others showed high phylogenetic uncertainty. Finally, we present recommendations for future analyses combining molecular and morphological evidence, regarding the selection of fossils and appropriate methodologies, and provide some perspectives on how to integrate fossils into the investigation of divergence times and the temporal evolution of morphological traits. [Angiosperms; fossil flowers; phylogenetic uncertainty; RoguePlots.].


Assuntos
Fósseis , Magnoliopsida , Humanos , Filogenia , Magnoliopsida/genética , Tempo , Flores/genética , Evolução Biológica
5.
Ecol Lett ; 26(4): 640-657, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36829296

RESUMO

Variation in species richness across the tree of life, accompanied by the incredible variety of ecological and morphological characteristics found in nature, has inspired many studies to link traits with species diversification. Angiosperms are a highly diverse group that has fundamentally shaped life on earth since the Cretaceous, and illustrate how species diversification affects ecosystem functioning. Numerous traits and processes have been linked to differences in species richness within this group, but we know little about their relative importance and how they interact. Here, we synthesised data from 152 studies that used state-dependent speciation and extinction (SSE) models on angiosperm clades. Intrinsic traits related to reproduction and morphology were often linked to diversification but a set of universal drivers did not emerge as traits did not have consistent effects across clades. Importantly, SSE model results were correlated to data set properties - trees that were larger, older or less well-sampled tended to yield trait-dependent outcomes. We compared these properties to recommendations for SSE model use and provide a set of best practices to follow when designing studies and reporting results. Finally, we argue that SSE model inferences should be considered in a larger context incorporating species' ecology, demography and genetics.


Assuntos
Evolução Biológica , Magnoliopsida , Filogenia , Ecossistema , Magnoliopsida/genética , Fenótipo , Especiação Genética , Biodiversidade
6.
New Phytol ; 240(2): 880-891, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37276503

RESUMO

Most contemporary angiosperms (flowering plants) are insect pollinated, but pollination by wind, water or vertebrates occurs in many lineages. Though evidence suggests insect pollination may be ancestral in angiosperms, this is yet to be assessed across the full phylogeny. Here, we reconstruct the ancestral pollination mode of angiosperms and quantify the timing and environmental associations of pollination shifts. We use a robust, dated phylogeny and species-level sampling across all angiosperm families to model the evolution of pollination modes. Data on the pollination system or syndrome of 1160 species were collated from the primary literature. Angiosperms were ancestrally insect pollinated, and insects have pollinated angiosperms for c. 86% of angiosperm evolutionary history. Wind pollination evolved at least 42 times, with few reversals to animal pollination. Transitions between insect and vertebrate pollination were more frequent: vertebrate pollination evolved at least 39 times from an insect-pollinated ancestor with at least 26 reversals. The probability of wind pollination increases with habitat openness (measured by Leaf Area Index) and distance from the equator. Our reconstruction gives a clear overview of pollination macroevolution across angiosperms, highlighting the long history of interactions between insect pollinators and angiosperms still vital to biodiversity today.


Assuntos
Magnoliopsida , Polinização , Humanos , Animais , Magnoliopsida/genética , Insetos , Filogenia , Vento , Flores
7.
New Phytol ; 238(4): 1685-1694, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36913725

RESUMO

The photographic record is increasingly becoming an important biodiversity resource for primary research and conservation monitoring. However, globally, there are important gaps in this record even in relatively well-researched floras. To quantify the gaps in the Australian native vascular plant photographic record, we systematically surveyed 33 sources of well-curated species photographs, assembling a list of species with accessible and verifiable photographs, as well as the species for which this search failed. Of 21 077 Australian native species, 3715 lack a verifiable photograph across our 33 surveyed resources. There are three major geographic hotspots of unphotographed species in Australia, all far from current population centres. Many unphotographed species are small in stature or uncharismatic, and many are also recently described. The large number of recently described species without accessible photographs was surprising. There are longstanding efforts in Australia to organise the plant photographic record, but in the absence of a global consensus to treat photographs as an essential biodiversity resource, this has not become common practice. Many recently described species are small-range endemics and some have special conservation status. Completing the botanical photographic record across the globe will facilitate a virtuous feedback loop of more efficient identification, monitoring and conservation.


Assuntos
Conservação dos Recursos Naturais , Traqueófitas , Austrália , Biodiversidade , Plantas
8.
New Phytol ; 238(6): 2685-2697, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960534

RESUMO

Fossil discoveries can transform our understanding of plant diversification over time and space. Recently described fossils in many plant families have pushed their known records farther back in time, pointing to alternative scenarios for their origin and spread. Here, we describe two new Eocene fossil berries of the nightshade family (Solanaceae) from the Esmeraldas Formation in Colombia and the Green River Formation in Colorado (USA). The placement of the fossils was assessed using clustering and parsimony analyses based on 10 discrete and five continuous characters, which were also scored in 291 extant taxa. The Colombian fossil grouped with members of the tomatillo subtribe, and the Coloradan fossil aligned with the chili pepper tribe. Along with two previously reported early Eocene fossils from the tomatillo genus, these findings indicate that Solanaceae were distributed at least from southern South America to northwestern North America by the early Eocene. Together with two other recently discovered Eocene berries, these fossils demonstrate that the diverse berry clade and, in turn, the entire nightshade family, is much older and was much more widespread in the past than previously thought.


Assuntos
Capsicum , Solanum , Fósseis , Frutas , América do Sul , Filogenia
9.
Syst Biol ; 71(3): 758-773, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34613395

RESUMO

Estimating time-dependent rates of speciation and extinction from dated phylogenetic trees of extant species (timetrees), and determining how and why they vary, is key to understanding how ecological and evolutionary processes shape biodiversity. Due to an increasing availability of phylogenetic trees, a growing number of process-based methods relying on the birth-death model have been developed in the last decade to address a variety of questions in macroevolution. However, this methodological progress has regularly been criticized such that one may wonder how reliable the estimations of speciation and extinction rates are. In particular, using lineages-through-time (LTT) plots, a recent study has shown that there are an infinite number of equally likely diversification scenarios that can generate any timetree. This has led to questioning whether or not diversification rates should be estimated at all. Here, we summarize, clarify, and highlight technical considerations on recent findings regarding the capacity of models to disentangle diversification histories. Using simulations, we illustrate the characteristics of newly proposed "pulled rates" and their utility. We recognize that the recent findings are a step forward in understanding the behavior of macroevolutionary modeling, but they in no way suggest we should abandon diversification modeling altogether. On the contrary, the study of macroevolution using phylogenetic trees has never been more exciting and promising than today. We still face important limitations in regard to data availability and methods, but by acknowledging them we can better target our joint efforts as a scientific community. [Birth-death models; extinction; phylogenetics; speciation.].


Assuntos
Biodiversidade , Especiação Genética , Evolução Biológica , Filogenia , Tempo
10.
Am J Bot ; 110(8): e16213, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37459475

RESUMO

PREMISE: Recent studies of floral disparity in the asterid order Ericales have shown that flowers vary strongly among families and that disparity is unequally distributed between the three flower modules (perianth, androecium, gynoecium). However, it remains unknown whether these patterns are driven by heterogeneous rates of morphological evolution or other factors. METHODS: Here, we compiled a data set of 33 floral characters scored for 414 species of Ericales sampled from 346 genera and all 22 families. We conducted ancestral state reconstructions using an equal-rates Markov model for each character. We estimated rates of morphological evolution for Ericales and for a separate angiosperm-wide data set of 19 characters and 792 species, creating "rate profiles" for Ericales, angiosperms, and major angiosperm subclades. We compared morphological rates among flower modules within each data set separately and between data sets, and we compared rates among angiosperm subclades using the angiosperm data set. RESULTS: The androecium exhibits the highest evolutionary rates across most characters, whereas most perianth and gynoecium characters evolve more slowly in both Ericales and angiosperms. Both high and low rates of morphological evolution can result in high floral disparity in Ericales. Analyses of an angiosperm-wide floral data set reveal that this pattern appears to be conserved across most major angiosperm clades. CONCLUSIONS: Elevated rates of morphological evolution in the androecium of Ericales may explain the higher disparity reported for this floral module. Comparing rates of morphological evolution through rate profiles proves to be a powerful tool in understanding floral evolution.


Assuntos
Ericales , Magnoliopsida , Magnoliopsida/genética , Magnoliopsida/anatomia & histologia , Evolução Biológica , Filogenia , Flores/genética , Flores/anatomia & histologia
11.
New Phytol ; 233(5): 2017-2035, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34699613

RESUMO

Biodiversity today has the unusual property that 85% of plant and animal species live on land rather than in the sea, and half of these live in tropical rainforests. An explosive boost to terrestrial diversity occurred from c. 100-50 million years ago, the Late Cretaceous and early Palaeogene. During this interval, the Earth-life system on land was reset, and the biosphere expanded to a new level of productivity, enhancing the capacity and species diversity of terrestrial environments. This boost in terrestrial biodiversity coincided with innovations in flowering plant biology and evolutionary ecology, including their flowers and efficiencies in reproduction; coevolution with animals, especially pollinators and herbivores; photosynthetic capacities; adaptability; and ability to modify habitats. The rise of angiosperms triggered a macroecological revolution on land and drove modern biodiversity in a secular, prolonged shift to new, high levels, a series of processes we name here the Angiosperm Terrestrial Revolution.


Assuntos
Magnoliopsida , Animais , Biodiversidade , Evolução Biológica , Ecologia , Ecossistema , Filogenia
12.
J Exp Bot ; 73(12): 3840-3853, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35438718

RESUMO

The origin of flowering plants (angiosperms) was one of the most transformative events in the history of our planet. Despite considerable interest from multiple research fields, numerous questions remain, including the age of the group as a whole. Recent studies have reported a perplexing range of estimates for the crown-group age of angiosperms, from ~140 million years (Ma; Early Cretaceous) to 270 Ma (Permian). Both ends of the spectrum are now supported by both macroevolutionary analyses of the fossil record and fossil-calibrated molecular dating analyses. Here, we first clarify and distinguish among the three ages of angiosperms: the age of their divergence with acrogymnosperms (stem age); the age(s) of emergence of their unique, distinctive features including flowers (morphological age); and the age of the most recent common ancestor of all their living species (crown age). We then demonstrate, based on recent studies, that fossil-calibrated molecular dating estimates of the crown-group age of angiosperms have little to do with either the amount of molecular data or the number of internal fossil calibrations included. Instead, we argue that this age is almost entirely conditioned by its own prior distribution (typically a calibration density set by the user in Bayesian analyses). Lastly, we discuss which future discoveries or novel types of analyses are most likely to bring more definitive answers. In the meantime, we propose that the age of angiosperms is best described as largely unknown (140-270 Ma) and that contrasting age estimates in the literature mostly reflect conflicting prior distributions. We also suggest that future work that depends on the time scale of flowering plant diversification be designed to integrate over this vexing uncertainty.


Assuntos
Evolução Biológica , Fósseis , Magnoliopsida , Teorema de Bayes , Evolução Molecular , Magnoliopsida/genética , Filogenia , Tempo
13.
Am J Bot ; 109(3): 437-455, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35112711

RESUMO

PREMISE: Pseudanthia are widespread and have long been postulated to be a key innovation responsible for some of the angiosperm radiations. The aim of our study was to analyze macroevolutionary patterns of these flower-like inflorescences and their potential correlation with diversification rates in Apiaceae subfamily Apioideae. In particular, we were interested to investigate evolvability of pseudanthia and evaluate their potential association with changes in the size of floral display. METHODS: The framework for our analyses consisted of a time-calibrated phylogeny of 1734 representatives of Apioideae and a morphological matrix of inflorescence traits encoded for 847 species. Macroevolutionary patterns in pseudanthia were inferred using Markov models of discrete character evolution and stochastic character mapping, and a principal component analysis was used to visualize correlations in inflorescence architecture. The interdependence between net diversification rates and the occurrence of pseudocorollas was analyzed with trait-independent and trait-dependent approaches. RESULTS: Pseudanthia evolved in 10 major clades of Apioideae with at least 36 independent origins and 46 reversals. The morphospace analysis recovered differences in color and compactness between floral and hyperfloral pseudanthia. A correlation between pseudocorollas and size of inflorescence was also strongly supported. Contrary to our predictions, pseudanthia are not responsible for variation in diversification rates identified in this subfamily. CONCLUSIONS: Our results suggest that pseudocorollas evolve as an answer to the trade-off between enlargement of floral display and costs associated with production of additional flowers. The high evolvability and architectural differences in apioid pseudanthia may be explained on the basis of adaptive wandering and evolutionary developmental biology.


Assuntos
Apiaceae , Magnoliopsida , Evolução Biológica , Flores/anatomia & histologia , Flores/genética , Inflorescência/anatomia & histologia , Filogenia
14.
New Phytol ; 230(2): 821-831, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33454991

RESUMO

Morphological diversity (disparity) is an essential but often neglected aspect of biodiversity. Hence, it seems timely and promising to re-emphasize morphology in modern evolutionary studies. Disparity is a good proxy for the diversity of functions and interactions with the environment of a group of taxa. In addition, geographical and ecological patterns of disparity are crucial to understand organismal evolution and to guide biodiversity conservation efforts. Here, we analyse floral disparity across latitudinal intervals, growth forms, climate types, types of habitats, and regions for a large and representative sample of the angiosperm order Ericales. We find a latitudinal gradient of floral disparity and a decoupling of disparity from species richness. Other factors investigated are intercorrelated, and we find the highest disparity for tropical trees growing in African and South American forests. Explanations for the latitudinal gradient of floral disparity may involve the release of abiotic constraints and the increase of biotic interactions towards tropical latitudes, allowing tropical lineages to explore a broader area of the floral morphospace. Our study confirms the relevance of biodiversity parameters other than species richness and is consistent with the importance of species interactions in the tropics, in particular with respect to angiosperm flowers and their pollinators.


Assuntos
Ericales , Magnoliopsida , Biodiversidade , Flores , Filogenia , Clima Tropical
15.
Am J Bot ; 107(10): 1433-1448, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33026116

RESUMO

PREMISE: Significant paleobotanical discoveries in recent decades have considerably improved our understanding of the early evolution of angiosperms and their flowers. However, our ability to test the systematic placement of fossil flowers on the basis of phylogenetic analyses has remained limited, mainly due to the lack of an adequate, angiosperm-wide morphological data set for extant taxa. Earlier attempts to place fossil flowers phylogenetically were, therefore, forced to make prior qualitative assessments of the potential systematic position of fossils and to restrict phylogenetic analyses to selected angiosperm subgroups. METHODS: We conduct angiosperm-wide molecular backbone analyses of 10 fossil flower taxa selected from the Cretaceous record. Our analyses make use of a floral trait data set built within the framework of the eFLOWER initiative. We provide an updated version of this data set containing data for 28 floral and two pollen traits for 792 extant species representing 372 angiosperm families. RESULTS: We find that some fossils are placed congruently with earlier hypotheses while others are found in positions that had not been suggested previously. A few take up equivocal positions, including the stem branches of large clades. CONCLUSIONS: Our study provides an objective approach to test for the phylogenetic position of fossil flowers across angiosperms. Such analyses may provide a complementary tool for paleobotanical studies, allowing for a more comprehensive understanding of fossil phylogenetic relationships in angiosperms. Ongoing work focused on extending the sampling of extant taxa and the number of floral traits will further improve the applicability and accuracy of our approach.


Assuntos
Fósseis , Magnoliopsida , Evolução Biológica , Flores , Magnoliopsida/genética , Filogenia , Pólen
16.
Ann Bot ; 123(1): 191-204, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30202847

RESUMO

Background and Aims: Although dioecy, which characterizes only 6 % of angiosperm species, has been considered an evolutionary dead end, recent studies have demonstrated that this is not necessarily the case. Moraceae (40 genera, 1100 spp., including Ficus, 750 spp.) are particularly diverse in breeding systems (including monoecy, gynodioecy, androdioecy and dioecy) and thus represent a model clade to study macroevolution of dioecy. Methods: Ancestral breeding systems of Ficus and Moraceae were inferred. To do so, a new dated phylogenetic tree of Ficus and Moraceae was first reconstructed by combining a revised 12-fossil calibration set and a densely sampled molecular data set of eight markers and 320 species. Breeding system evolution was then reconstructed using both parsimony and model-based (maximum likelihood and Bayesian) approaches with this new time scale. Key Results: The crown group ages of Ficus and Moraceae were estimated in the Eocene (40.6-55.9 Ma) and Late Cretaceous (73.2-84.7 Ma), respectively. Strong support was found for ancestral dioecy in Moraceae. Although the ancestral state of Ficus remained particularly sensitive to model selection, the results show that monoecy and gynodioecy evolved from dioecy in Moraceae, and suggest that gynodioecy probably evolved from monoecy in Ficus. Conclusions: Dioecy was found not to be an evolutionary dead end in Moraceae. This study provides a new time scale for the phylogeny and a new framework of breeding system evolution in Ficus and Moraceae.


Assuntos
Evolução Biológica , Moraceae/fisiologia , Evolução Molecular , Ficus/genética , Ficus/fisiologia , Moraceae/genética , Reprodução
17.
New Phytol ; 219(4): 1170-1187, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29577323

RESUMO

Contents Summary 1170 I. Introduction 1170 II. Six key questions 1172 III. Three key challenges 1177 IV. Conclusions 1181 Acknowledgements 1182 References 1183 SUMMARY: The origin and rapid diversification of angiosperms (flowering plants) represent one of the most intriguing topics in evolutionary biology. Despite considerable progress made in complementary fields over the last two decades (paleobotany, phylogenetics, ecology, evo-devo, genomics), many important questions remain. For instance, what has been the impact of mass extinctions on angiosperm diversification? Are the angiosperms an adaptive radiation? Has morphological evolution in angiosperms been gradual or pulsed? We propose that the recent and ongoing revolution in macroevolutionary methods provides an unprecedented opportunity to explore long-standing questions that probably hold important clues to understand present-day biodiversity. We present six key questions that explore the origin and diversification of angiosperms. We also identify three key challenges to address these questions: (1) the development of new integrative models that include diversification, multiple intrinsic and environmental traits, biogeography and the fossil record all at once, whilst accounting for sampling bias and heterogeneity of macroevolutionary processes through time and among lineages; (2) the need for large and standardized synthetic databases of morphological variation; and (3) continuous effort on sampling the fossil record, but with a revolution in current paleobotanical practice.


Assuntos
Evolução Biológica , Magnoliopsida/fisiologia , Biodiversidade , Flores/fisiologia , Filogenia , Fatores de Tempo
18.
Syst Biol ; 66(3): 338-351, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27650175

RESUMO

The evolutionary timescale of angiosperms has long been a key question in biology. Molecular estimates of this timescale have shown considerable variation, being influenced by differences in taxon sampling, gene sampling, fossil calibrations, evolutionary models, and choices of priors. Here, we analyze a data set comprising 76 protein-coding genes from the chloroplast genomes of 195 taxa spanning 86 families, including novel genome sequences for 11 taxa, to evaluate the impact of models, priors, and gene sampling on Bayesian estimates of the angiosperm evolutionary timescale. Using a Bayesian relaxed molecular-clock method, with a core set of 35 minimum and two maximum fossil constraints, we estimated that crown angiosperms arose 221 (251-192) Ma during the Triassic. Based on a range of additional sensitivity and subsampling analyses, we found that our date estimates were generally robust to large changes in the parameters of the birth-death tree prior and of the model of rate variation across branches. We found an exception to this when we implemented fossil calibrations in the form of highly informative gamma priors rather than as uniform priors on node ages. Under all other calibration schemes, including trials of seven maximum age constraints, we consistently found that the earliest divergences of angiosperm clades substantially predate the oldest fossils that can be assigned unequivocally to their crown group. Overall, our results and experiments with genome-scale data suggest that reliable estimates of the angiosperm crown age will require increased taxon sampling, significant methodological changes, and new information from the fossil record. [Angiospermae, chloroplast, genome, molecular dating, Triassic.].


Assuntos
Evolução Biológica , Genoma de Planta/genética , Magnoliopsida/classificação , Magnoliopsida/genética , Filogenia , Teorema de Bayes , Evolução Molecular , Fósseis , Tempo
19.
Syst Biol ; 66(2): 152-166, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27616324

RESUMO

Rapidly growing biological data-including molecular sequences and fossils-hold an unprecedented potential to reveal how evolutionary processes generate and maintain biodiversity. However, researchers often have to develop their own idiosyncratic workflows to integrate and analyze these data for reconstructing time-calibrated phylogenies. In addition, divergence times estimated under different methods and assumptions, and based on data of various quality and reliability, should not be combined without proper correction. Here we introduce a modular framework termed SUPERSMART (Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa), and provide a proof of concept for dealing with the moving targets of evolutionary and biogeographical research. This framework assembles comprehensive data sets of molecular and fossil data for any taxa and infers dated phylogenies using robust species tree methods, also allowing for the inclusion of genomic data produced through next-generation sequencing techniques. We exemplify the application of our method by presenting phylogenetic and dating analyses for the mammal order Primates and for the plant family Arecaceae (palms). We believe that this framework will provide a valuable tool for a wide range of hypothesis-driven research questions in systematics, biogeography, and evolution. SUPERSMART will also accelerate the inference of a "Dated Tree of Life" where all node ages are directly comparable. [Bayesian phylogenetics; data mining; divide-and-conquer methods; GenBank; multilocus multispecies coalescent; next-generation sequencing; palms; primates; tree calibration.].


Assuntos
Classificação/métodos , Fósseis , Filogenia , Fatores Etários , Migração Animal , Animais , Arecaceae/classificação , Teorema de Bayes , Primatas/classificação , Reprodutibilidade dos Testes , Tempo
20.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28381623

RESUMO

The staggering diversity of angiosperms and their flowers has fascinated scientists for centuries. However, the quantitative distribution of floral morphological diversity (disparity) among lineages and the relative contribution of functional modules (perianth, androecium and gynoecium) to total floral disparity have rarely been addressed. Focusing on a major angiosperm order (Ericales), we compiled a dataset of 37 floral traits scored for 381 extant species and nine fossils. We conducted morphospace analyses to explore phylogenetic, temporal and functional patterns of disparity. We found that the floral morphospace is organized as a continuous cloud in which most clades occupy distinct regions in a mosaic pattern, that disparity increases with clade size rather than age, and that fossils fall in a narrow portion of the space. Surprisingly, our study also revealed that among functional modules, it is the androecium that contributes most to total floral disparity in Ericales. We discuss our findings in the light of clade history, selective regimes as well as developmental and functional constraints acting on the evolution of the flower and thereby demonstrate that quantitative analyses such as the ones used here are a powerful tool to gain novel insights into the evolution and diversity of flowers.


Assuntos
Flores/fisiologia , Magnoliopsida , Evolução Biológica , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA