Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3334, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849518

RESUMO

Epithelial ovarian cancer is the most lethal gynecological malignancy, owing notably to its high rate of therapy-resistant recurrence in spite of good initial response to chemotherapy. Although poly(ADP-ribose) polymerase inhibitors (PARPi) have shown promise for ovarian cancer treatment, extended therapy usually leads to acquired PARPi resistance. Here we explored a novel therapeutic option to counter this phenomenon, combining PARPi and inhibitors of nicotinamide phosphoribosyltransferase (NAMPT). Cell-based models of acquired PARPi resistance were created through an in vitro selection procedure. Using resistant cells, xenograft tumors were grown in immunodeficient mice, while organoid models were generated from primary patient tumor samples. Intrinsically PARPi-resistant cell lines were also selected for analysis. Our results show that treatment with NAMPT inhibitors effectively sensitized all in vitro models to PARPi. Adding nicotinamide mononucleotide, the resulting NAMPT metabolite, abrogated the therapy-induced cell growth inhibition, demonstrating the specificity of the synergy. Treatment with olaparib (PARPi) and daporinad (NAMPT inhibitor) depleted intracellular NAD+ , induced double-strand DNA breaks, and promoted apoptosis as monitored by caspase-3 cleavage. The two drugs were also synergistic in mouse xenograft models and clinically relevant patient-derived organoids. Therefore, in the context of PARPi resistance, NAMPT inhibition could offer a promising new option for ovarian cancer patients.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Niacinamida , Neoplasias Ovarianas/tratamento farmacológico , Fosfatos de Dinucleosídeos
2.
Cancers (Basel) ; 12(8)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784519

RESUMO

Cancer cell lines are amongst the most important pre-clinical models. In the context of epithelial ovarian cancer, a highly heterogeneous disease with diverse subtypes, it is paramount to study a wide panel of models in order to draw a representative picture of the disease. As this lethal gynaecological malignancy has seen little improvement in overall survival in the last decade, it is all the more pressing to support future research with robust and diverse study models. Here, we describe ten novel spontaneously immortalized patient-derived ovarian cancer cell lines, detailing their respective mutational profiles and gene/biomarker expression patterns, as well as their in vitro and in vivo growth characteristics. Eight of the cell lines were classified as high-grade serous, while two were determined to be of the rarer mucinous and clear cell subtypes, respectively. Each of the ten cell lines presents a panel of characteristics reflective of diverse clinically relevant phenomena, including chemotherapeutic resistance, metastatic potential, and subtype-associated mutations and gene/protein expression profiles. Importantly, four cell lines formed subcutaneous tumors in mice, a key characteristic for pre-clinical drug testing. Our work thus contributes significantly to the available models for the study of ovarian cancer, supplying additional tools to better understand this complex disease.

3.
Integr Biol (Camb) ; 11(4): 130-141, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31172192

RESUMO

Multicellular tumour spheroids are an ideal in vitro tumour model to study clonal heterogeneity and drug resistance in cancer research because different cell types can be mixed at will. However, measuring the individual response of each cell population over time is challenging: current methods are either destructive, such as flow cytometry, or cannot image throughout a spheroid, such as confocal microscopy. Our group previously developed a wide-field fluorescence hyperspectral imaging system to study spheroids formed and cultured in microfluidic chips. In the present study, two subclones of a single parental ovarian cancer cell line transfected to express different fluorophores were produced and co-culture spheroids were formed on-chip using ratios forming highly asymmetric subpopulations. We performed a 3D proliferation assay on each cell population forming the spheroids that matched the 2D growth behaviour. Response assays to PARP inhibitors and platinum-based drugs were also performed to follow the clonal evolution of mixed populations. Our experiments show that hyperspectral imaging can detect spheroid response before observing a decrease in spheroid diameter. Hyperspectral imaging and microfluidic-based spheroid assays provide a versatile solution to study clonal heterogeneity, able to measure response in subpopulations presenting as little as 10% of the initial spheroid.


Assuntos
Técnicas de Cultura de Células , Evolução Clonal , Técnicas de Cocultura , Dispositivos Lab-On-A-Chip , Microscopia de Fluorescência/métodos , Esferoides Celulares/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Microfluídica , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
4.
Nat Commun ; 10(1): 2556, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186408

RESUMO

Senescence is a tumor suppression mechanism defined by stable proliferation arrest. Here we demonstrate that the known synthetic lethal interaction between poly(ADP-ribose) polymerase 1 inhibitors (PARPi) and DNA repair triggers p53-independent ovarian cancer cell senescence defined by senescence-associated phenotypic hallmarks including DNA-SCARS, inflammatory secretome, Bcl-XL-mediated apoptosis resistance, and proliferation restriction via Chk2 and p21 (CDKN1A). The concept of senescence as irreversible remains controversial and here we show that PARPi-senescent cells re-initiate proliferation upon drug withdrawal, potentially explaining the requirement for sustained PARPi therapy in the clinic. Importantly, PARPi-induced senescence renders ovarian and breast cancer cells transiently susceptible to second-phase synthetic lethal approaches targeting the senescence state using senolytic drugs. The combination of PARPi and a senolytic is effective in preclinical models of ovarian and breast cancer suggesting that coupling these synthetic lethalities provides a rational approach to their clinical use and may together be more effective in limiting resistance.


Assuntos
Proliferação de Células/efeitos dos fármacos , Senescência Celular , Reparo do DNA , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Mutações Sintéticas Letais , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico
5.
DNA Repair (Amst) ; 35: 37-47, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26444226

RESUMO

Type 1A topoisomerases (topos) are ubiquitous enzymes involved in supercoiling regulation and in the maintenance of genome stability. Escherichia coli possesses two type 1A enzymes, topo I (topA) and topo III (topB). Cells lacking both enzymes form very long filaments and have severe chromosome segregation and growth defects. We previously found that RNase HI overproduction or a dnaT::aph mutation could significantly correct these phenotypes. This leads us to hypothesize that they were related to unregulated replication originating from R-loops, i.e. constitutive stable DNA replication (cSDR). cSDR, first observed in rnhA (RNase HI) mutants, is characterized by its persistence for several hours following protein synthesis inhibition and by its requirement for primosome components, including DnaT. Here, to visualize and measure cSDR, the incorporation of the nucleotide analog ethynyl deoxyuridine (EdU) during replication in E. coli cells pre-treated with protein synthesis inhibitors, was revealed by "click" labeling with Alexa Fluor(®) 488 in fixed cells, and flow cytometry analysis. cSDR was detected in rnhA mutants, but not in wild-type strains, and the number of cells undergoing cSDR was significantly reduced by the introduction of the dnaT::aph mutation. cSDR was also found in topA, double topA topB but not in topB null cells. This result is consistent with the established function of topo I in the inhibition of R-loop formation. Moreover, our finding that topB rnhA mutants are perfectly viable demonstrates that topo III is not uniquely required during cSDR. Thus, either topo I or III can provide the type 1A topo activity that is specifically required during cSDR to allow chromosome segregation.


Assuntos
Replicação do DNA/genética , DNA Topoisomerases Tipo I/genética , DNA Bacteriano/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Segregação de Cromossomos , DNA Topoisomerases Tipo I/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Instabilidade Genômica , Mutação , Ribonuclease H/genética , Ribonuclease H/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA