Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Open Res Eur ; 4: 152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39219786

RESUMO

Research Infrastructures (RIs) are strategic assets facilitating innovation and knowledge advancement across all scientific disciplines. They provide researchers with advanced tools and resources that go beyond individual or institutional capacities and promote collaboration, community-building and the application of scientific standards. Remote and virtual access to RIs enables scientists to use these essential resources without the necessity of being physically present. The COVID-19 pandemic restrictions where a catalyst for the expansion and further development of remote and virtual access models, particularly in fields where physical access had been the predominant model. The eRImote project explores pathways for digital and remote RI access through targeted surveys, stakeholder workshops, expert groups discussions, and the analysis of specific use cases. This paper provides a definition of remote and virtual access and remote training and explores their implementation across various RIs, highlighting the implications for their operational processes and the dynamics of interaction between RIs and their user communities. It presents the identified advantages, obstacles, and best-practices, alongside strategies and recommendations to navigate and mitigate challenges effectively. Key issues and recommendations are summed up separately for remote access, virtual access, and remote training, complemented by general recommendations for facilitating remote and virtual access to RIs. These relate to budgeting and funding, the balancing of RI access models, the need for regulatory frameworks for sample shipments, collaboration among RIs, impact assessment of remote and virtual access on user interactions, operational efficiency and the environment footprint of RIs, and the adaption of data sharing policies. Stakeholders are broadly invited to give their feedback on the paper's findings and conclusions, which will be integrated into improved versions of this paper.

2.
Ambio ; 45(5): 516-37, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26984258

RESUMO

Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for impact assessments and adaptation strategies. Although much progress has been made in understanding and predicting snow-cover changes and their multiple consequences, many uncertainties remain. In this paper, we review advances in snow monitoring and modelling, and the impact of snow changes on ecosystems and society in Arctic regions. Interdisciplinary activities are required to resolve the current limitations on measuring and modelling snow characteristics through the cold season and at different spatial scales to assure human well-being, economic stability, and improve the ability to predict manage and adapt to natural hazards in the Arctic region.


Assuntos
Clima Frio , Ecossistema , Monitoramento Ambiental/métodos , Modelos Teóricos , Neve , Regiões Árticas , Monitoramento Ambiental/economia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA