Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 201(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31235514

RESUMO

A large-scale genomic inversion encompassing 0.79 Mb of the 1.816-Mb-long Streptococcus pyogenes serotype M49 strain NZ131 chromosome spontaneously occurs in a minor subpopulation of cells, and in this report genetic selection was used to obtain a stable lineage with this chromosomal rearrangement. This inversion, which drastically displaces the ori site relative to the terminus, changes the relative length of the replication arms so that one replichore is approximately 0.41 Mb while the other is about 1.40 Mb in length. Genomic reversion to the original chromosome constellation is not observed in PCR-monitored analyses after 180 generations of growth in rich medium. Compared to the parental strain, the inversion surprisingly demonstrates a nearly identical growth pattern in the first phase of the exponential phase, but differences do occur when resources in the medium become limited. When cultured separately in rich medium during prolonged stationary phase or in an experimental acute infection animal model (Galleria mellonella), the parental strain and the invertant have equivalent survival rates. However, when they are coincubated together, both in vitro and in vivo, the survival of the invertant declines relative to the level for the parental strain. The accompanying aspect of the study suggests that inversions taking place near oriC always happen to secure the linkage of oriC to DNA sequences responsible for chromosome partition. The biological relevance of large-scale inversions is also discussed.IMPORTANCE Based on our previous work, we created to our knowledge the largest asymmetric inversion, covering 43.5% of the S. pyogenes genome. In spite of a drastic replacement of origin of replication and the unbalanced size of replichores (1.4 Mb versus 0.41 Mb), the invertant, when not challenged with its progenitor, showed impressive vitality for growth in vitro and in pathogenesis assays. The mutant supports the existing idea that slightly deleterious mutations can provide the setting for secondary adaptive changes. Furthermore, comparative analysis of the mutant with previously published data strongly indicates that even large genomic rearrangements survive provided that the integrity of the oriC and the chromosome partition cluster is preserved.


Assuntos
Inversão Cromossômica , Cromossomos Bacterianos/genética , Genoma Bacteriano , Streptococcus pyogenes/genética , Evolução Molecular , Genômica , Seleção Genética
2.
Microbiology (Reading) ; 158(Pt 6): 1428-1436, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22361943

RESUMO

The mechanisms that allow Streptococcus pyogenes to survive and persist in the human host, often in spite of antibiotic therapy, remain poorly characterized. Therefore, the determination of culture conditions for long-term studies is crucial to advancement in this field. Stationary cultures of S. pyogenes strain NZ131 and its spontaneous small-colony variant OK171 were found to survive in rich medium for less than 2 weeks, and this inability to survive resulted from the acidification of the medium to below pH 5.5, which the cells did not tolerate for longer than 6-7 days. The growth of NZ131 resulted in acidification of the culture to below pH 5.5 by the onset of stationary phase, and the loss of viability occurred in a linear fashion. These results were also found to be true for M49 strain CS101 and for M1 strain SF370. The S. pyogenes strains could be protected from killing by the addition of a buffer that stabilized the pH of the medium at pH 6.5, ensuring bacterial survival to at least 70 days. By contrast, increasing the glucose added to the medium accelerated the loss of culture viability in strain NZ131 but not OK171, suggesting that the small-colony variant is altered in glucose uptake or metabolism. Similarly, acidification of the medium prior to inoculation or at the middle of exponential phase resulted in growth inhibition of all strains. These results suggest that control of the pH is crucial for establishing long-term cultures of S. pyogenes.


Assuntos
Meios de Cultura/química , Viabilidade Microbiana , Streptococcus pyogenes/crescimento & desenvolvimento , Meios de Cultura/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Streptococcus pyogenes/química , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
3.
J Bacteriol ; 190(23): 7773-85, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18820018

RESUMO

The 1,815,783-bp genome of a serotype M49 strain of Streptococcus pyogenes (group A streptococcus [GAS]), strain NZ131, has been determined. This GAS strain (FCT type 3; emm pattern E), originally isolated from a case of acute post-streptococcal glomerulonephritis, is unusually competent for electrotransformation and has been used extensively as a model organism for both basic genetic and pathogenesis investigations. As with the previously sequenced S. pyogenes genomes, three unique prophages are a major source of genetic diversity. Two clustered regularly interspaced short palindromic repeat (CRISPR) regions were present in the genome, providing genetic information on previous prophage encounters. A unique cluster of genes was found in the pathogenicity island-like emm region that included a novel Nudix hydrolase, and, further, this cluster appears to be specific for serotype M49 and M82 strains. Nudix hydrolases eliminate potentially hazardous materials or prevent the unbalanced accumulation of normal metabolites; in bacteria, these enzymes may play a role in host cell invasion. Since M49 S. pyogenes strains have been known to be associated with skin infections, the Nudix hydrolase and its associated genes may have a role in facilitating survival in an environment that is more variable and unpredictable than the uniform warmth and moisture of the throat. The genome of NZ131 continues to shed light upon the evolutionary history of this human pathogen. Apparent horizontal transfer of genetic material has led to the existence of highly variable virulence-associated regions that are marked by multiple rearrangements and genetic diversification while other regions, even those associated with virulence, vary little between genomes. The genome regions that encode surface gene products that will interact with host targets or aid in immune avoidance are the ones that display the most sequence diversity. Thus, while natural selection favors stability in much of the genome, it favors diversity in these regions.


Assuntos
Genoma Bacteriano , Streptococcus pyogenes/classificação , Streptococcus pyogenes/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Variação Genética , Família Multigênica , Prófagos/genética , Pirofosfatases/genética , Streptococcus pyogenes/patogenicidade , Virulência , Nudix Hidrolases
4.
FEMS Microbiol Lett ; 224(2): 239-46, 2003 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-12892888

RESUMO

The cysB gene product is a LysR-type regulatory protein required for expression of the cys regulon. cysB mutants of Escherichia coli and Salmonella, along with being auxotrophs for the cysteine, exhibit increased resistance to the antibiotics novobiocin (Nov) and mecillinam. In this work, by using lambdaplacMu9 insertions creating random lacZ fusions, we identify a gene, hslJ, whose expression appeared to be increased in cysB mutants and needed for Nov resistance. Measurements of the HSLJ::lacZ gene fusion expression demonstrated that the hslJ gene is negatively regulated by CysB. In addition we observe the negative autogenous control of HslJ. When the control imposed by CysB is lifted in the cysB mutant, the elevation of Nov resistance can be achieved only in the presence of wild-type hslJ allele. A double cysB hslJ mutant restores the sensitivity to Nov. Overexpression of the wild-type HslJ protein either in a cysB(+) or a cysB(-) background increases the level of Nov resistance indicating that hslJ product is indeed involved in accomplishing this phenotype. The HSLJ::OmegaKan allele encodes the C-terminaly truncated mutant protein HslJ Q121Ter which is not functional in achieving the Nov resistance but when overexpressed induces the psp operon. Finally, we found that inactivation of hslJ does not affect the increased resistance to mecillinam in cysB mutants.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Novobiocina/farmacologia , Andinocilina/farmacologia , Sequência de Bases , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Resposta ao Choque Térmico/genética , Óperon Lac , Penicilinas/farmacologia , Fenótipo , Proteínas Recombinantes de Fusão/genética
6.
J Bacteriol ; 185(6): 1857-69, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12618450

RESUMO

A RecA-independent chromosomal rearrangement in the upstream region of the streptolysin O (slo) gene of Streptococcus pyogenes which affects slo expression was identified. PCR analysis was used to demonstrate that this kind of rearrangement was found in several strains of different lineages. Chromosomal loci involved in the recombination were found to be 746 kb apart on the 1.85-Mb-long chromosome. The primary structure of the splicing region, the reproducibility of the rearrangement, and the fact that reconstructed recombinant molecules fused to erm and lacZ reporter genes affected their expression indicate that this event is not accidental but may play a role in the expression of the slo gene. In addition, the product of the recombining DNAs, including the splicing site, does not follow any example of a known recombination mechanism. The implications of this rearrangement for slo expression are discussed.


Assuntos
Regulação Bacteriana da Expressão Gênica , Rearranjo Gênico , Recombinação Genética , Streptococcus pyogenes/genética , Estreptolisinas/metabolismo , Proteínas de Bactérias , Sequência de Bases , Cromossomos Bacterianos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Bacteriano , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Streptococcus pyogenes/metabolismo , Estreptolisinas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Microbiology (Reading) ; 149(Pt 12): 3449-3459, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14663078

RESUMO

The LysR-type transcriptional regulator (LTTR) CysB is a transcription factor in Escherichia coli cells, where as a homotetramer it binds the target promoter regions and activates the genes involved in sulphur utilization and sulphonate-sulphur metabolism, while negatively autoregulating its own transcription. The hslJ gene was found to be negatively regulated by CysB and directly correlated with novobiocin resistance of the bacterium. cysB mutants showed upregulation of the hslJ : : lacZ gene fusion and exhibited increased novobiocin resistance. In this study the hslJ transcription start point and the corresponding putative sigma(70) promoter were determined. The hslJ promoter region was defined by employing different hslJ-lacZ operon fusions, and transcription of the hslJ gene was shown to be subject to both repression imposed by the CysB regulator and direct or indirect autogenous negative control. These two regulations compete to some extent but they are not mutually exclusive. CysB acts as a direct repressor of hslJ transcription and binds the hslJ promoter region that carries the putative CysB repressor site. This CysB binding, apparently responsible for repression, is enhanced in the presence of the ligand N-acetylserine (NAS), hitherto considered to be a positive cofactor in CysB-mediated gene regulations. Interallelic complementation of characterized CysB mutants I33N and S277Ter partially restored the repression of hslJ transcription and the consequent novobiocin sensitivity, but did not complement the cysteine auxotrophy.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Fatores de Transcrição/metabolismo , Alelos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
8.
Infect Immun ; 70(5): 2730-3, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11953421

RESUMO

A recent model for cytolysin-mediated translocation in Streptococcus pyogenes proposes that NAD-glycohydrolase is translocated through streptolysin O-generated pores into a host cell (J. Madden, N. Ruiz, and M. Caparon, Cell 104:143-152, 2001). This model also assumes that the NAD-glycohydrolase (nga) and streptolysin O (slo) genes that code for these products are organized in an operon-like structure expressed from a single promoter only (nga). We expand this model by showing that slo possesses its own autonomous promoter, which is located 155 bp upstream of the slo gene. Under experimental conditions in which S. pyogenes is grown in THY medium, the strength of the slo promoter, as measured by the activity of a lacZ reporter gene, resulted in low but highly reproducible values. Finally, we demonstrated that sloR, a S. pyogenes gene that closely resembles the Clostridium perfringens pfoR gene, exerts a negative effect on the expression of the slo gene.


Assuntos
Genes , NAD+ Nucleosidase/genética , Óperon , Streptococcus pyogenes/genética , Estreptolisinas/genética , Proteínas de Bactérias , Sequência de Bases , Dados de Sequência Molecular , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA