RESUMO
BACKGROUND: The RAS/RAF/MEK/ERK pathway is one of the most downregulated pathway in cancer. Inhibitors of RAF and MEK have established clinical use while ERK inhibitors recently faced the clinic. We aimed to generate resistant cell lines which could be helpful for defining new combinations able to overcome resistance. METHODS: the human NSCLC cell line NCI-H727, sensitive to both MEK and ERK inhibitors, was treated with increasing concentrations of MEK162 (as MEK inhibitor) or SCH772984 as ERK inhibitor. RESULTS: we successfully obtained a MEK resistant subline (H727/MEK, after 40 passages) as well as an ERK resistant subline (H727/SCH, after 18 passages). The two resistant sublines H727/MEK and H727/SCH were cross-resistant to ERK and MEK inhibitors, respectively, but not to RAF inhibitors. The sublines maintained the responsiveness to inhibitors of the parallel PI3K/akt/mTOR pathway as well as to agents with different mechanism of action. Mechanistically, treatment of sensitive and resistant cells with MEK or ERK inhibitors was able to induce a similar inhibition of ERK phosphorylation, while only in parental cells the drugs were able to induce a downregulation of S6 and RSK phosphorylation. CONCLUSIONS: these resistant cells represent an important tool for further studies on the mechanisms of resistance and ways to overcome it.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/patologia , Humanos , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologiaRESUMO
High-dose standard-of-care chemotherapy is the only option for triple-negative breast cancer (TNBC) patients, which eventually die due to metastatic tumors. Recently, metronomic chemotherapy (mCHT) showed advantages in treating TNBCs leading us to investigate the anti-metastatic and anti-angiogenic potential of metronomic 5-Fluorouracil plus Vinorelbine (5-FU+VNR) on endothelial cells (ECs) and TNBCs in comparison to standard treatment (STD). We found that 10-fold lower doses of 5-FU+VNR given mCHT vs. STD inhibits cell proliferation and survival of ECs and TNBC cells. Both schedules strongly affect ECs migration and invasion, but in TNBC cells mCHT is significantly more effective than STD in impairing cell migration and invasion. The two treatments disrupt FAK/VEGFR/VEGF signaling in both ECs and TNBC cells. mCHT, and to a much lesser extent STD treatment, induces apoptosis in ECs, whereas it switches the route of cell death from apoptosis (as induced by STD) to autophagy in TNBC cells. mCHT-treated TNBCs-derived conditioned medium also strongly affects ECs' migration, modulates different angiogenesis-associated proteins, and hampers angiogenesis in matrix sponge in vivo. In conclusion, mCHT administration of 5-FU+VNR is more effective than STD schedule in controlling cell proliferation/survival and migration/invasion of both ECs and TNBC cells and has a strong anti-angiogenic effect. Our data suggest that the stabilization of tumor growth observed in TNBC patients treated with mCHT therapy schedule is likely due not only to direct cytotoxic effects but also to anti-metastatic and anti-angiogenic effects.
RESUMO
INTRODUCTION: Serine/threonine kinase 11 (LKB1/STK11) is one of the most mutated genes in NSCLC accounting for approximately one-third of cases and its activity is impaired in approximately half of KRAS-mutated NSCLC. At present, these patients cannot benefit from any specific therapy. METHODS: Through CRISPR/Cas9 technology, we systematically deleted LKB1 in both wild-type (WT) and KRAS-mutated human NSCLC cells. By using these isogenic systems together with genetically engineered mouse models we investigated the cell response to ERK inhibitors both in vitro and in vivo. RESULTS: In all the systems used here, the loss of LKB1 creates vulnerability and renders these cells particularly sensitive to ERK inhibitors both in vitro and in vivo. The same cells expressing a WT LKB1 poorly respond to these drugs. At the molecular level, in the absence of LKB1, ERK inhibitors induced a marked inhibition of p90 ribosomal S6 kinase activation, which in turn abolished S6 protein activation, promoting the cytotoxic effect. CONCLUSIONS: This work shows that ERK inhibitors are effective in LKB1 and LKB1/KRAS-mutated tumors, thus offering a therapeutic strategy for this prognostically unfavorable subgroup of patients. Because ERK inhibitors are already in clinical development, our findings could be easily translatable to the clinic. Importantly, the lack of effect in cells expressing WT LKB1, predicts that treatment of LKB1-mutated tumors with ERK inhibitors should have a favorable toxicity profile.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Proteínas Serina-Treonina Quinases/genéticaRESUMO
Triple Negative Breast Cancer (TNBC) is an aggressive neoplasia with median Overall Survival (OS) less than two years. Despite the availability of new drugs, the chance of survival of these patients did not increase. The combination of low doses of drugs in a metronomic schedule showed efficacy in clinical trials, exhibiting an anti-proliferative and anti-tumour activity. In Victor-2 study we recently evaluated a new metronomic combination (mCHT) of Capecitabine (CAPE) and Vinorelbine (VNR) in breast cancer patients showing a disease control rate with a median Progression-Free Survival (PFS) of 4.7 months in 28 TNBC patients. Here in Victor-0 study, we examined the effect of mCHT vs standard (STD) schedule of administration of different combinations of 5-Fluorouracil (5FU), the active metabolite of CAPE, and VNR in TNBC cell lines MDA-MB-231 and BT-549. A significant anti-proliferative activity was observed in cells treated with metronomic vs STD administration of 5FU or VNR alone. Combination of the two drugs showed an additive inhibitor effect on cell growth in both cell lines. Moreover, after exposure of cells to 5FU and VNR under mCHT or conventional schedule of administration we also observed a downregulation of chemoresistance factor Bcl-2, changes in pro-apoptotic protein Bax and in cleaved effector caspase-3 and increased expression of LC3A/B autophagy protein. Our results therefore suggest that molecular mechanisms implicated in apoptosis and autophagy as well as the cross-talk between these two forms of cell death in MDA-MB-231 and BT-549 cells treated with 5FU and VNR is dose- and schedule-dependent and provide some insights about the roles of autophagy and senescence in 5FU/VNR-induced cell death.