Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 150: 105629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657894

RESUMO

The world's hunger for novel food ingredients drives the development of safe, sustainable, and nutritious novel food products. For foods containing novel proteins, potential allergenicity of the proteins is a key safety consideration. One such product is a fungal biomass obtained from the fermentation of Rhizomucor pusillus. The annotated whole genome sequence of this strain was subjected to sequence homology searches against the AllergenOnline database (sliding 80-amino acid windows and full sequence searches). In a stepwise manner, proteins were designated as potentially allergenic and were further compared to proteins from commonly consumed foods and from humans. From the sliding 80-mer searches, 356 proteins met the conservative >35% Codex Alimentarius threshold, 72 of which shared ≥50% identity over the full sequence. Although matches were identified between R. pusillus proteins and proteins from allergenic food sources, the matches were limited to minor allergens from these sources, and they shared a greater degree of sequence homology with those from commonly consumed foods and human proteins. Based on the in silico analysis and a literature review for the source organism, the risk of allergenic cross-reactivity of R. pusillus is low.


Assuntos
Alérgenos , Biomassa , Rhizomucor , Alérgenos/imunologia , Rhizomucor/imunologia , Humanos , Ingredientes de Alimentos , Simulação por Computador , Hipersensibilidade Alimentar/imunologia , Proteínas Fúngicas/imunologia
2.
Crit Rev Toxicol ; 52(9): 715-730, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36803409

RESUMO

Alpha-diketones, notably diacetyl, have been used as flavoring agents. When airborne in occupational settings, exposures to diacetyl have been associated with serious respiratory disease. Other α-diketones, such as 2,3-pentanedione, and analogues such as acetoin (a reduced form of diacetyl), require evaluation, particularly, in light of recently available toxicological studies. The current work reviewed mechanistic, metabolic, and toxicology data available for α-diketones. Data were most available for diacetyl and 2,3-pentanedione, and a comparative assessment of their pulmonary effects was performed, and an occupational exposure limit (OEL) was proposed for 2,3-pentanedione. Previous OELs were reviewed and an updated literature search was performed. Respiratory system histopathology data from 3-month toxicology studies were evaluated with benchmark dose (BMD) modelling of sensitive endpoints. This demonstrated comparable responses at concentrations up to 100 ppm, with no consistent overall pattern of greater sensitivity to either diacetyl or 2,3-pentanedione. In contrast, based on draft raw data, no adverse respiratory effects were observed in comparable 3-month toxicology studies that evaluated exposure to acetoin at up to 800 ppm (highest tested concentration), indicating that acetoin does not present the same inhalation hazard as diacetyl or 2,3-pentanedione. To derive an OEL for 2,3-pentanedione, BMD modelling was conducted for the most sensitive endpoint from 90-day inhalation toxicity studies, namely, hyperplasia of nasal respiratory epithelium. On the basis of this modelling, an 8-hour time-weighted average OEL of 0.07 ppm is proposed to be protective against respiratory effects that may be associated with chronic workplace exposure to 2,3-pentanedione.


Assuntos
Diacetil , Exposição Ocupacional , Diacetil/toxicidade , Acetoína , Cetonas , Pentanonas/toxicidade
3.
Food Chem Toxicol ; 179: 113972, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37532172

RESUMO

To address the growing world population and reduce the impact of environmental changes on the global food supply, ingredients are being produced using microorganisms to yield sustainable and innovative products. Food ingredients manufactured using modern biotechnology must be produced by non-toxigenic and nonpathogenic production organisms that do not harbor antimicrobial resistance (AMR). Several fungal species represent attractive targets as sources of alternative food products. One such product is a fungal biomass obtained from the fermentation of Rhizomucor pusillus strain CBS 143028. The whole genome sequence of this strain was annotated and subjected to sequence homology searches and in silico phenotype prediction tools to identify genetic elements encoding for protein toxins active via oral consumption, virulence factors associated with pathogenicity, and determinants of AMR. The in silico investigation revealed no genetic elements sharing significant sequence homology with putative virulence factors, protein toxins, or AMR determinants, including the absence of mucoricin, an essential toxin in the pathogenesis of mucormycosis. These in silico findings were corroborated in vitro based on the absence of clinically relevant mycotoxin or antibacterial secondary metabolites. Consequently, it is unlikely that R. pusillis strain CBS 143028 would pose a safety concern for use in food for human consumption.


Assuntos
Ingredientes de Alimentos , Humanos , Biomassa , Rhizomucor/genética
4.
Food Chem Toxicol ; 168: 113342, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35963473

RESUMO

Cultivation of filamentous fungi to produce sustainable, nutrient rich meat replacements has recently attracted significant commercial and research interest. Here, we report evidence for the safety and nutritional value of Neurospora crassa mycoprotein, a whole mycelium food ingredient produced by fermentation and minimal downstream processing. N. crassa has a long history of human use in fermented foods and in molecular biology research. A survey of studies that used N. crassa in animal feed revealed no adverse effects to the health of the animals. Furthermore, a review of the literature found no reports of confirmed allergenicity or toxicity in humans involving N. crassa. Genomic toxigenicity analysis and in vitro testing did not identify any toxins in N. crassa mycoprotein. Two independent genomic allergenicity studies did not identify proteins that would be considered a particular risk for allergenic potential. Furthermore, nutritional analysis demonstrated that N. crassa mycoprotein is a good source of complete protein and is rich in fiber, potassium, and iron. Taken together, the presented data and the history of human use without evidence of human or animal harm indicate that foods containing N. crassa can generally be regarded as safe.


Assuntos
Ingredientes de Alimentos , Neurospora crassa , Animais , Humanos , Ferro/metabolismo , Carne , Neurospora crassa/genética , Neurospora crassa/metabolismo , Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA