Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Neurol ; 14: 1266225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38073623

RESUMO

Background: Cortical plasticity induced by quadripulse stimulation (QPS) has been shown to correlate with cognitive functions in patients with relapsing-remitting multiple sclerosis (RRMS) and to not be reduced compared to healthy controls (HCs). Objective: This study aimed to compare the degree of QPS-induced plasticity between different subtypes of multiple sclerosis (MS) and HCs and to investigate the association of the degree of plasticity with motor and cognitive functions. We expected lower levels of plasticity in patients with progressive MS (PMS) but not RRMS compared to HCs. Furthermore, we expected to find positive correlations with cognitive and motor performance in patients with MS. Methods: QPS-induced plasticity was compared between 34 patients with PMS, 30 patients with RRMS, and 30 HCs using linear mixed-effects models. The degree of QPS-induced cortical plasticity was correlated with various motor and cognitive outcomes. Results: There were no differences regarding the degree of QPS-induced cortical plasticity between HCs and patients with RRMS (p = 0.86) and PMS (p = 0.18). However, we only found correlations between the level of induced plasticity and both motor and cognitive functions in patients with intact corticospinal tract integrity. Exploratory analysis revealed significantly reduced QPS-induced plasticity in patients with damage compared to intact corticospinal tract integrity (p < 0.001). Conclusion: Our study supports the notion of pyramidal tract integrity being of more relevance for QPS-induced cortical plasticity in MS and related functional significance than the type of disease.

2.
Brain Stimul ; 15(2): 403-413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35182811

RESUMO

BACKGROUND: Cortical reorganization and plasticity may compensate for structural damage in Multiple Sclerosis (MS). It is important to establish sensitive methods to measure these compensatory mechanisms, as they may be of prognostic value. OBJECTIVE: To investigate the association between the degree of cortical plasticity and cognitive performance and to compare plasticity between MS patients and healthy controls (HCs). METHODS: The amplitudes of the motor evoked potential (MEP) pre and post quadripulse stimulation (QPS) applied over the contralateral motor cortex served as measure of the degree of cortical plasticity in 63 patients with relapsing-remitting MS (RRMS) and 55 matched HCs. The main outcomes were the correlation coefficients between the difference of MEP amplitudes post and pre QPS and the Symbol Digit Modalities Test (SDMT) and Brief Visuospatial Memory Test-Revised (BVMT-R), and the QPSxgroup interaction in a mixed model predicting the MEP amplitude. RESULTS: SDMT and BVMT-R correlated significantly with QPS-induced cortical plasticity in RRMS patients. Plasticity was significantly reduced in patients with cognitive impairment compared to patients with preserved cognitive function and the degree of plasticity differentiated between both patient groups. Interestingly, the overall RRMS patient cohort did not show reduced plasticity compared to HCs. CONCLUSIONS: We provide first evidence that QPS-induced plasticity may inform about the global synaptic plasticity in RRMS which correlates with cognitive performance as well as clinical disability. Larger longitudinal studies on patients with MS are needed to investigate the relevance and prognostic value of this measure for disease progression and recovery.


Assuntos
Disfunção Cognitiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Cognição , Humanos , Testes Neuropsicológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA