RESUMO
The endosomal system of eukaryotic cells represents a central sorting and recycling compartment linked to metabolic signaling and the regulation of cell growth. Tightly controlled activation of Rab GTPases is required to establish the different domains of endosomes and lysosomes. In metazoans, Rab7 controls endosomal maturation, autophagy, and lysosomal function. It is activated by the guanine nucleotide exchange factor (GEF) complex Mon1-Ccz1-Bulli (MCBulli) of the tri-longin domain (TLD) family. While the Mon1 and Ccz1 subunits have been shown to constitute the active site of the complex, the role of Bulli remains elusive. We here present the cryo-electron microscopy (cryo-EM) structure of MCBulli at 3.2 Å resolution. Bulli associates as a leg-like extension at the periphery of the Mon1 and Ccz1 heterodimers, consistent with earlier reports that Bulli does not impact the activity of the complex or the interactions with recruiter and substrate GTPases. While MCBulli shows structural homology to the related ciliogenesis and planar cell polarity effector (Fuzzy-Inturned-Wdpcp) complex, the interaction of the TLD core subunits Mon1-Ccz1 and Fuzzy-Inturned with Bulli and Wdpcp, respectively, is remarkably different. The variations in the overall architecture suggest divergent functions of the Bulli and Wdpcp subunits. Based on our structural analysis, Bulli likely serves as a recruitment platform for additional regulators of endolysosomal trafficking to sites of Rab7 activation.
Assuntos
Proteínas de Transporte Vesicular , Proteínas rab de Ligação ao GTP , Animais , Proteínas de Transporte Vesicular/metabolismo , Microscopia Crioeletrônica , Transporte Proteico , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismoRESUMO
Maturation from early to late endosomes depends on the exchange of their marker proteins Rab5 to Rab7. This requires Rab7 activation by its specific guanine nucleotide exchange factor (GEF) Mon1-Ccz1. Efficient GEF activity of this complex on membranes depends on Rab5, thus driving Rab-GTPase exchange on endosomes. However, molecular details on the role of Rab5 in Mon1-Ccz1 activation are unclear. Here, we identify key features in Mon1 involved in GEF regulation. We show that the intrinsically disordered N-terminal domain of Mon1 autoinhibits Rab5-dependent GEF activity on membranes. Consequently, Mon1 truncations result in higher GEF activity in vitro and alterations in early endosomal structures in Drosophila nephrocytes. A shift from Rab5 to more Rab7-positive structures in yeast suggests faster endosomal maturation. Using modeling, we further identify a conserved Rab5-binding site in Mon1. Mutations impairing Rab5 interaction result in poor GEF activity on membranes and growth defects in vivo. Our analysis provides a framework to understand the mechanism of Ras-related in brain (Rab) conversion and organelle maturation along the endomembrane system.
Assuntos
Proteínas de Drosophila , Proteínas de Saccharomyces cerevisiae , Animais , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Endossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Drosophila/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismoRESUMO
The Saccharomyces cerevisiae casein kinase protein Yck3 is a central regulator at the vacuole that phosphorylates several proteins involved in membrane trafficking. Here, we set out to identify novel substrates of this protein. We found that endogenously tagged Yck3 localized not only at the vacuole, but also on endosomes. To disable Yck3 function, we generated a kinase-deficient mutant and thus identified the I-BAR-protein Ivy1 as a novel Yck3 substrate. Ivy1 localized to both endosomes and vacuoles, and Yck3 controlled this localization. A phosphomimetic Ivy1-SD mutant was found primarily on vacuoles, whereas its non-phosphorylatable SA variant strongly localized to endosomes, similar to what was observed upon deletion of Yck3. In vitro analysis revealed that Yck3-mediated phosphorylation strongly promoted Ivy1 recruitment to liposomes carrying the Rab7-like protein Ypt7. Modeling of Ivy1 with Ypt7 identified binding sites for Ypt7 and a positively charged patch, which were both required for Ivy1 localization. Strikingly, Ivy1 mutations in either site resulted in more cells with multilobed vacuoles, suggesting a partial defect in its membrane biogenesis. Our data thus indicate that Yck3-mediated phosphorylation controls both localization and function of Ivy1 in endolysosomal biogenesis.
Assuntos
Proteínas de Saccharomyces cerevisiae , Vacúolos , Vacúolos/metabolismo , Fosforilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Caseína Quinases/metabolismoRESUMO
Several concepts for platinum-based catalysts for the oxygen reduction reaction (ORR) are presented that exceed the US Department of Energy targets for Pt-related ORR mass activity. Most concepts achieve their high ORR activity by increasing the Pt specific activity at the expense of a lower electrochemically active surface area (ECSA). In the potential region controlled by kinetics, such a lower ECSA is counterbalanced by the high specific activity. At higher overpotentials, however, which are often applied in real systems, a low ECSA leads to limitations in the reaction rate not by kinetics, but by mass transport. Here we report on self-supported platinum-cobalt oxide networks that combine a high specific activity with a high ECSA. The high ECSA is achieved by a platinum-cobalt oxide bone nanostructure that exhibits unprecedentedly high mass activity for self-supported ORR catalysts. This concept promises a stable fuel-cell operation at high temperature, high current density and low humidification.
RESUMO
We present an alternative to commonly used, but from an environmental point of view, problematic wet strength agents, which are usually added to paper to prevent a loss of mechanical stability and finally disintegrate when they get into contact with water. To this end, diazoester-containing copolymers are generated, which are coated onto paper and by heating to 110-160 °C for short periods of time become activated and form carbene intermediates, which undergo a CH-insertion cross-linking reaction. The process leads to a simultaneous cross-linking of the polymer and its attachment to the cellulose substrate. The immobilization process of copolymers consisting of a hydrophilic matrix based on N,N-dimethylacrylamide and a diazoester-based comonomer to a cellulose model surface and to laboratory-engineered, fibrous paper substrates is investigated as a function of time, temperature, and cross-linker composition. The distribution of the polymer in the fiber network is studied using confocal fluorescence microscopy. Finally, the tensile properties of modified wet and dry eucalyptus sulfate papers are measured to demonstrate the strong effect of the thermally cross-linked copolymers on the wet strength of paper substrates. Initial experiments show that the tensile indices of the modified and wetted paper samples are up to 50 times higher compared to the values measured for unmodified samples. When dry and wet papers coated with the above-described wetting agents are compared, relative wet strengths of over 30% are observed.
Assuntos
Celulose , Água , Interações Hidrofóbicas e Hidrofílicas , Resistência à TraçãoRESUMO
INTRODUCTION: When the SARS-CoV-2 pandemic reached Europe in 2020, a German governmental order forced clinics to immediately suspend elective care, causing a problem for patients with chronic illnesses such as epilepsy. Here, we report the experience of one clinic that converted its outpatient care from personal appointments to telemedicine services. METHODS: Documentations of telephone contacts and telemedicine consultations at the Epilepsy Center Frankfurt Rhine-Main were recorded in detail between March and May 2020 and analyzed for acceptance, feasibility, and satisfaction of the conversion from personal to telemedicine appointments from both patients' and medical professionals' perspectives. RESULTS: Telephone contacts for 272 patients (mean age: 38.7â¯years, range: 17-79â¯years, 55.5% female) were analyzed. Patient-rated medical needs were either very urgent (6.6%, nâ¯=â¯18), urgent (23.5%, nâ¯=â¯64), less urgent (29.8%, nâ¯=â¯81), or nonurgent (39.3%, nâ¯=â¯107). Outpatient service cancelations resulted in a lack of understanding (9.6%, nâ¯=â¯26) or anger and aggression (2.9%, nâ¯=â¯8) in a minority of patients, while 88.6% (nâ¯=â¯241) reacted with understanding, or relief (3.3%, nâ¯=â¯9). Telemedicine consultations rather than a postponed face-to-face visit were requested by 109 patients (40.1%), and these requests were significantly associated with subjective threat by SARS-CoV-2 (pâ¯=â¯0.004), urgent or very urgent medical needs (pâ¯=â¯0.004), and female gender (pâ¯=â¯0.024). Telemedicine satisfaction by patients and physicians was high. Overall, 9.2% (nâ¯=â¯10) of patients reported general supply problems due to SARS-CoV-2, and 28.4% (nâ¯=â¯31) reported epilepsy-specific problems, most frequently related to prescriptions, or supply problems for antiseizure drugs (ASDs; 22.9%, nâ¯=â¯25). CONCLUSION: Understanding and acceptance of elective ambulatory visit cancelations and the conversion to telemedicine consultations was high during the coronavirus disease 2019 (COVID-19) lockdown. Patients who engaged in telemedicine consultations were highly satisfied, supporting the feasibility and potential of telemedicine during the COVID-19 pandemic and beyond.
Assuntos
Instituições de Assistência Ambulatorial/organização & administração , Assistência Ambulatorial/organização & administração , Infecções por Coronavirus/prevenção & controle , Epilepsia/terapia , Controle de Infecções/organização & administração , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Telemedicina/organização & administração , Adolescente , Adulto , Idoso , Assistência Ambulatorial/métodos , Agendamento de Consultas , Betacoronavirus , COVID-19 , Infecções por Coronavirus/epidemiologia , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/epidemiologia , Encaminhamento e Consulta , SARS-CoV-2 , Telefone , Adulto JovemRESUMO
Background and Purpose- Endovascular treatment for large vessel occlusion in ischemic stroke has proven to be effective in large clinical trials. We aimed to provide real-world estimates of endovascular treatment reperfusion rates and functional outcome on a countrywide scale. Methods- Two thousand seven hundred ninety-four patients with large vessel occlusion were included into an investigator-initiated, industry-independent, prospective registry in 25 sites in Germany between June 2015 and April 2018. The primary outcome was the score on the modified Rankin Scale ranging from zero (no symptoms) to 6 (death) at 3 months. Secondary analyses included the prediction of a good outcome (modified Rankin Scale, 0-2). Dichotomized analyses of predictors were performed using logistic regression adjusted for potential confounders. Results- Median age was 75 years (interquartile range, 64-82); median National Institutes of Health Stroke Scale score was 15 (interquartile range, 10-19). Vessel occlusion was in the anterior circulation in 2265 patients (88%) and in the posterior circulation in 303 patients (12%). Intravenous alteplase before endovascular treatment was given in 1457 patients (56%). Successful reperfusion was achieved in 2143 subjects (83%). At 3 months, 854 patients (37%) showed a good outcome; mortality was 29%. There was no difference between anterior and posterior circulation occlusions (P=0.27). Significant predictors for a good outcome were younger age (odds ratio [OR], 1.06; 95% CI, 1.05-1.07), no interhospital transfer (OR, 1.39; 95% CI, 1.03-1.88), lower stroke severity (OR, 1.10; 95% CI, 1.08-1.13), smaller infarct size (OR, 1.26; 95% CI, 1.15-1.39), alteplase use (OR, 1.49; 95% CI, 1.08-2.06), and reperfusion success (OR, 1.69; 95% CI, 1.45-1.96). Conclusions- High rates of favorable outcome can be achieved on a countrywide scale by endovascular treatment. Mortality appears to be greater in the daily routine than otherwise reported by authors of large randomized trials. There were no outcome differences between the anterior and posterior circulation. Clinical Trial Registration- URL: https://www.clinicaltrials.gov. Unique identifier: NCT03356392.
Assuntos
Isquemia Encefálica/cirurgia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/cirurgia , Trombectomia , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/etiologia , Procedimentos Endovasculares/efeitos adversos , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Sistema de Registros , Acidente Vascular Cerebral/tratamento farmacológico , Trombectomia/efeitos adversos , Ativador de Plasminogênio Tecidual/uso terapêutico , Resultado do TratamentoRESUMO
PEGylated proteins play an increasingly important role in pharmaceutical drug delivery. We recently showed that short poly(ethylene glycol) (PEG) chains can affect protein structure, even when they are not making extensive contact with the protein surface. In contrast, PEG is generally thought to form a relatively unstructured coil, and its compactness depends on solvent conditions. Here we test whether a host protein could allow PEG to form recurrent structural motifs while the PEG chain is in contact with the protein surface. We link a PEG oligomer (n = 45) to one of two nearly opposite locations on the small α-helical protein λ6-85 to investigate this question. We first demonstrate experimentally that in these particular positions, PEG does not significantly affect the thermodynamic stability or folding kinetics of λ6-85. We then use several all-atom molecular dynamics (MD) simulations 1 µs in duration to show how PEG equilibrates between states extending into the solvent and states packed onto the protein surface. The packing reveals recurring structures, including persistent hydrogen bond and hydrophobic contact patterns that appear multiple times. Some interactions of PEG with surface lysines are best described as an "intermittent slithering" motion of the PEG around the side chain, as seen in short MD movies. Thus, PEG achieves a variety of metastable organized structures on the protein surface, somewhere between a random globule and true folding. We also investigated the PEG-protein interaction in the unfolded state of the protein. We find that PEG has a propensity to stabilize certain helices of λ6-85, no matter which of the two positions it was attached to. Thus, sufficiently long PEG chains are organized by the protein surface and in turn interact with certain elements of protein structure more than others, even when PEG is attached to very different sites.
Assuntos
Simulação de Dinâmica Molecular , Polietilenoglicóis/química , Dobramento de Proteína , Proteínas Repressoras/química , Proteínas Virais Reguladoras e Acessórias/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Estrutura Secundária de ProteínaRESUMO
The IR spectrum of benzyl radical:water clusters was recorded. Benzyl radicals were produced by vacuum flash pyrolysis and trapped in superfluid helium nanodroplets. The infrared spectrum of benzyl radical water aggregates in the range 2585-2820 cm-1 was recorded by subsequent addition of deuterated water. A total of seven peaks are observed at 2766, 2750, 2656, 2638, 2633, 2598, and 2593 cm-1. Based on pressure dependent measurements and comparison to accompanying ab initio calculations, five of these bands are assigned to distinct O-D stretch vibrations of benzyl:water clusters with one and two water molecules. In line with previous experiments on benzene:water clusters, we observe the formation of a water dimer-like motif that is attached to one face of the benzyl radical.
RESUMO
The long-term stability and γ-sterilisability of bioactive layers is the precondition for the application of implants. Thus, aging processes of a microwave deposited, plasma polymerized allylamine nanofilm (PPAAm) with positively charged amino groups were evaluated concerning physicochemical characteristics and cell adhesion capacity over the course of one year. XPS, FT-IR, surface free energy, and water contact angle measurements elucidated not only the oxidation of the PPAAm film due to atmospheric oxygen reacting with surface free radicals but also the influence of atmospheric moisture during sample storage in ambient air. Surprisingly, within 7 days 70% of the primary amino groups are lost and mostly converted into amides. A positive zeta-potential was verified for half a year and longer. Increasing polar surface groups and a water contact angle shift from 60° to 40° are further indications of altered surface properties. Nevertheless, MG-63 human osteoblastic cells adhered and spread out considerably on aged and additionally γ-sterilized PPAAm layers deposited on polished titanium alloys (Ti-6Al-4V_P). These cell-relevant characteristics were highly significant over the whole period of one year and may not be related to the existence of primary amino groups. Rather, the oxidation products, the chemical amide group, that is, seem to support the attachment of osteoblasts at all times up to one year.
Assuntos
Alilamina , Membranas Artificiais , Nanoestruturas/química , Osteoblastos/metabolismo , Gases em Plasma , Titânio , Ligas , Alilamina/química , Alilamina/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Teste de Materiais , Osteoblastos/citologia , Oxirredução , Fatores de Tempo , Titânio/química , Titânio/farmacologiaRESUMO
Many plant materials in nature have the ability to change their shape to respond to external stimuli, such as humidity or moisture, to ensure their survival or safe seed release. A well-known example for this phenomenon is the pinecone, which is able to open its scales at low humidity due to the specific bilayer structures of the scale. Inspired by this, we developed a novel humidity-driven actuator based on paper. This was realized by the lamination of untreated paper made from eucalyptus fibers to a paper-carboxymethyl cellulose (CMC) composite. As observed, the hygroexpansion of the composite can be easily controlled by the amount of CMC in the impregnated paper sheet, which, thus, controls the morphologic deformation of the paper bilayer. For a more detailed understanding of these novel paper soft robots, we also studied the dynamic water vapor adsorption, polymer distribution and hygroexpansion of the paper-polymer composites. Finally, we applied a geometrically nonlinear finite element model to predict the bending behavior of paper bilayers and compared the results to experimental data. From this, we conclude that due to the complexity of structure of the paper composite, a universal prediction of the hygromorphic behavior is not a trivial matter.
RESUMO
Sphingolipid levels are crucial determinants of neurodegenerative disorders and therefore require tight regulation. The Orm protein family and ceramides inhibit the rate-limiting step of sphingolipid biosynthesis-the condensation of L-serine and palmitoyl-coenzyme A (CoA). The yeast isoforms Orm1 and Orm2 form a complex with the serine palmitoyltransferase (SPT). While Orm1 and Orm2 have highly similar sequences, they are differentially regulated, though the mechanistic details remain elusive. Here, we determine the cryoelectron microscopy structure of the SPT complex containing Orm2. Complementary in vitro activity assays and genetic experiments with targeted lipidomics demonstrate a lower activity of the SPT-Orm2 complex than the SPT-Orm1 complex. Our results suggest a higher inhibitory potential of Orm2, despite the similar structures of the Orm1- and Orm2-containing complexes. The high conservation of SPT from yeast to man implies different regulatory capacities for the three human ORMDL isoforms, which might be key for understanding their role in sphingolipid-mediated neurodegenerative disorders.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Serina C-Palmitoiltransferase , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Esfingolipídeos/biossíntese , Humanos , Ligação ProteicaRESUMO
BACKGROUND: This study aimed to evaluate the utility of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase L1 (UCHL1) and total tau (tTAU) serum concentrations as approximation for cerebrospinal fluid (CSF) concentrations of the respective biomarkers in the context of neuroinflammation and multiple sclerosis (MS). METHODS: NfL, GFAP, UCHL1 and tTAU concentrations in serum and CSF were measured in 183 patients (122 with neuroinflammatory disease and 61 neurological or somatoform disease controls) using the single molecule array HD-1 analyzer (Quanterix, Boston, MA). Spearman's rank correlations were computed between serum and CSF concentrations. In a second step, the effects of age, BMI, gadolinium-enhancing lesions in MRI, integrity of the blood-brain barrier (BBB) and presence of acute relapse were accounted for by computing partial correlations. The analyses were repeated for a subsample consisting of MS phenotype patients only (n = 118). EDSS, MS disease activity and acute relapse were considered as additional covariates. Receiver operating characteristic (ROC) analysis was performed for each serum/CSF biomarker concentration to assess how well the particular biomarker concentration differentiates MS patients from somatoform disease controls. Correlations between serum and CSF levels as well as area under the curve (AUC) values were compared for the different biomarkers using z-test statistics. RESULTS: Serum concentrations correlated positively with CSF levels for NfL (r = 0.705, p < 0.01) as well as for GFAP (r = 0.259, p < 0.01). Correlation coefficients were significantly higher for NfL than for GFAP (z = 5.492, p < 0.01). We found no significant serum-CSF correlations for UCHL1 or tTAU. After adjusting for covariates, the results remained unchanged. In the analysis focusing only on MS patients, the results were replicated. ROC analysis demonstrated similarly acceptable performance of serum and CSF NfL values in differentiating MS phenotype patients from somatoform disease controls. AUC values were significantly higher for serum and CSF NfL compared to other biomarkers. CONCLUSION: NfL and GFAP but not UCHL1 or tTAU serum concentrations are associated with CSF levels of the respective biomarker. NfL exhibits more robust correlations between its serum and CSF concentrations as compared to GFAP independently from BBB integrity, clinical and radiological covariates. Both serum and CSF NfL values differentiate between MS and controls.
Assuntos
Biomarcadores , Proteína Glial Fibrilar Ácida , Esclerose Múltipla , Proteínas de Neurofilamentos , Ubiquitina Tiolesterase , Proteínas tau , Humanos , Proteínas de Neurofilamentos/sangue , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Feminino , Proteína Glial Fibrilar Ácida/sangue , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Masculino , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/diagnóstico , Ubiquitina Tiolesterase/sangue , Ubiquitina Tiolesterase/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/sangue , Doenças Neuroinflamatórias/sangue , Doenças Neuroinflamatórias/líquido cefalorraquidiano , Doenças Neuroinflamatórias/diagnósticoRESUMO
Palladium films hold signicance due to their remarkable affinity for hydrogen diffusion, rendering them valauble for the seperation and purification of hydrogen in membrane reactors. However, palladium is expensive, and its films can become brittle after only a few cycles of hydrogen separation. Alloying with silver has been shown to overcome the problem of palladium embrittlement. Palladium-silver films have been produced via several methods but all have drawbacks, such as difficulties controlling the alloy composition. This study explores two promising jet printing methods: Inkjet and Aerosoljet. Both methods offer potential advantages such as direct patterning, which reduces waste, enables thin film production, and allows for the control of alloy composition. For the first time, palladium-silver alloys have been produced via inkjet printing using a palladium-silver metal organic decomposition (MOD) ink, which alloys at a temperature of 300 °C with nitrogen. Similarly, this study also demonstrates a pioneering approach for Aerosol Jet printing, showing the potential of a novel room-temperature method, for the deposition of palladium-silver MOD inks. This low temperature approach is considered an important development as palladium-silver MOD inks are originally designed for deposition on heated substrates.
RESUMO
BACKGROUND: Definitions of aggressive MS employ clinical and MR imaging criteria to identify highly active, rapidly progressing disease courses. However, the degree of overlap between clinical and radiological parameters and biochemical markers of CNS injury is not fully understood. Aim of this cross-sectional study was to match clinical and MR imaging hallmarks of aggressive MS to serum/CSF markers of neuroaxonal and astroglial injury (neurofilament light chain (sNfL, cNfL), and glial fibrillary acidic protein (sGFAP, cGFAP)). METHODS: We recruited 77 patients with relapsing-remitting MS (RRMS) and 22 patients with clinically isolated syndrome. NfL and GFAP levels in serum and CSF were assessed using a single-molecule-array HD-1-analyzer. A general linear model with each biomarker as a dependent variable was computed. Clinical and imaging criteria of aggressive MS, as recently proposed by the ECTRIMS Consensus Group, were modeled as independent variables. Other demographic, clinical or laboratory parameters, were modeled as covariates. Analyses were repeated in a homogenous subgroup, consisting only of newly diagnosed, treatment-naïve RRMS patients presenting with an acute relapse. RESULTS: After adjusting for covariates and multiplicity of testing, sNfL and cNfL concentrations were strongly associated with the presence of ≥2 gadolinium-enhancing lesions (psNfL = 0.00008; pcNfL = 0.004) as well as the presence of infratentorial lesions on MRI (psNfL = 0.0003; pcNfL < 0.004). No other clinical and imaging criteria of aggressive MS correlated significantly with NfL or GFAP in serum and CSF. In the more homogeneous subgroup, sNfL still was associated with the presence of ≥2 gadolinium-enhancing lesions (psNfL = 0.001), presence of more than 20 T2-lesions (psNfL = 0.049) as well as the presence of infratentorial lesions on MRI (psNfL = 0.034), while cNfL was associated with the presence of ≥2 gadolinium-enhancing lesions (psNfL = 0.011) and presence of more than 20 T2-lesions (psNfL = 0.029). CONCLUSIONS: Among proposed risk factors for an aggressive disease course, MRI findings but not clinical characteristics correlated with sNfL and cNfL as a marker of neuroaxonal injury and should be given appropriate weight considering MS prognosis and therapy. No significant correlation was detected for GFAP alone.
Assuntos
Biomarcadores , Proteína Glial Fibrilar Ácida , Imageamento por Ressonância Magnética , Proteínas de Neurofilamentos , Humanos , Masculino , Feminino , Adulto , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Proteína Glial Fibrilar Ácida/sangue , Proteínas de Neurofilamentos/sangue , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/sangue , Estudos Transversais , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/patologia , Pessoa de Meia-Idade , Adulto Jovem , Axônios/patologia , Neuroglia/patologia , Doenças Desmielinizantes/líquido cefalorraquidiano , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/sangueRESUMO
BACKGROUND AND PURPOSE: To determine the potential prognostic value of proliferation and angiogenesis plasma proteins following CT-guided high dose rate brachytherapy (HDR-BT) of hepatocellular carcinoma (HCC). MATERIALS AND METHODS: For this prospective study, HDR-BT (1 × 15 Gy) was administered to 24 HCC patients. Plasma was obtained and analyzed using an Olink proteomics Target-96 immuno-oncology-panel that included multiple markers of angiogenesis and proliferation. Fold-change (FC) ratios were calculated by comparing baseline and 48 h post HDR-BT paired samples. Patients were classified as responders (n = 12) if they had no local progression within 6 months or systemic progression within 2 years. Non-responders (n = 12) had recurrence within 6 months and/or tumor progression or extrahepatic disease within 2 years. RESULTS: Proliferation marker EGF was significantly elevated in non-responders compared to responders (p = 0.0410) while FGF-2, HGF, and PlGF showed no significant differences. Angiogenesis markers Angiopoietin-1 and PDGF-B were likewise significantly elevated in non-responders compared to responders (p = 0.0171, p = 0.0462, respectively) while Angiopoietin-2, VEGF-A, and VEGFR-2 did not differ significantly. Kaplan-Meier analyses demonstrated significantly shorter time to systemic progression in patients with increased EGF and Angiopoietin-1 (p = 0.0185, both), but not in patients with one of the remaining proteins elevated (all p > 0.1). Pooled analysis for these 9 proteins showed significantly shorter time to systemic progression for FC ≥1.3 and ≥1.5 for at least 3 proteins elevated (p = 0.0415, p = 0.0193, respectively). CONCLUSION: Increased plasma levels of EGF and Angiopoietin-1 after HDR-BT for HCC are associated with poor response and may therefore function as predictive biomarkers of outcome.
RESUMO
Biomimetic actuators are typically constructed as functional bi- or multilayers, where actuating and resistance layers together dictate bending responses upon triggering by environmental stimuli. Inspired by motile plant structures, like the stems of the false rose of Jericho (Selaginella lepidophylla), we introduce polymer-modified paper sheets that can act as soft robotic single-layer actuators capable of hygro-responsive bending reactions. A tailored gradient modification of the paper sheet along its thickness entails increased dry and wet tensile strength and allows at the same time for hygro-responsiveness. For the fabrication of such single-layer paper devices, the adsorption behavior of a cross-linkable polymer to cellulose fiber networks was first evaluated. By using different concentrations and drying procedures fine-tuned polymer gradients throughout the thickness can be achieved. Due to the covalent cross-linking of polymer with fibers, these paper samples possess significantly increased dry and wet tensile strength properties. We furthermore investigated these gradient papers with respect to a mechanical deflection during humidity cycling. The highest humidity sensitivity is achieved using eucalyptus paper with a grammage of 150 g m-2 modified with the polymer dissolved in IPA (~13 wt%) possessing a polymer gradient. Our study presents a straightforward approach for the design of novel hygroscopic, paper-based single-layer actuators, which have a high potential for diverse soft robotic and sensor applications.
RESUMO
Sphingolipids are structural membrane components that also function in cellular stress responses. The serine palmitoyltransferase (SPT) catalyzes the rate-limiting step in sphingolipid biogenesis. Its activity is tightly regulated through multiple binding partners, including Tsc3, Orm proteins, ceramides, and the phosphatidylinositol-4-phosphate (PI4P) phosphatase Sac1. The structural organization and regulatory mechanisms of this complex are not yet understood. Here, we report the high-resolution cryo-EM structures of the yeast SPT in complex with Tsc3 and Orm1 (SPOT) as dimers and monomers and a monomeric complex further carrying Sac1 (SPOTS). In all complexes, the tight interaction of the downstream metabolite ceramide and Orm1 reveals the ceramide-dependent inhibition. Additionally, observation of ceramide and ergosterol binding suggests a co-regulation of sphingolipid biogenesis and sterol metabolism within the SPOTS complex.
Assuntos
Ceramidas , Proteínas de Saccharomyces cerevisiae , Ceramidas/metabolismo , Esfingolipídeos/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
BACKGROUND: Large vessel occlusion (LVO) is a severe condition that carries a high risk of morbidity and mortality, underscoring the importance of effective prevention strategies. This retrospective study aimed to analyze the intake of preventive medication at the time of hospitalization in a cohort of recurrent stroke patients presenting with acute LVO. METHODS: The study assessed the intake of either platelet aggregation inhibitors (PAI), oral anticoagulants (OAC) or statins at admission in patients with recurrent stroke and correlated it with the final classification of LVO. The frequency of those secondary preventive medication in recurrent stroke patients was defined as primary endpoint. The Modified Rankin Scale (mRS) at discharge was used as a functional outcome and defined as a secondary outcome measure. RESULTS: This study included 866 patients who were treated for LVO between 2016 and 2020, of whom 160 (18.5%) had a recurrent ischemic stroke. OAC (25.6% vs. 14.1%, p < 0.01), PAI (50.0% vs. 26.0%, p < 0.01), or statin therapy (50.6% vs. 20.8%, p < 0.01) at admission were significantly more frequent in recurrent stroke patients compared to patients with a first-time stroke. Concerning LVO etiology in recurrent stroke patients, OAC at admission was taken in 46.8% of cardioembolic LVO, whereas PAI and statin at admission in macroangiopathic LVO were administered to 40.0%; neither PAI nor OAC was taken in 26.0%, 28.3%, and 31.6% of cardioembolic, macroangiopathic, or cryptogenic strokes, respectively. Regardless of stroke recurrence or etiology, there was an increase in mRS at discharge. CONCLUSIONS: Despite high-quality healthcare, this study suggested a significant proportion of patients with recurrent stroke who were either non-adherent or insufficiently adherent to secondary preventive medication. Given the disability associated with LVO, improving patients' medication adherence and identifying unknown stroke causes are crucial for effective prevention strategies.
RESUMO
BACKGROUND AND OBJECTIVES: To increase the validity of biomarker measures in multiple sclerosis (MS), factors affecting their concentration need to be identified. Here, we test whether the volume of distribution approximated by the patients' estimated blood volume (BV) and body mass index (BMI) affect the serum concentrations of glial fibrillary acidic protein (GFAP). As a control, we also determine the relationship between BV/BMI and GFAP concentrations in CSF. To confirm earlier findings, we test the same hypotheses for neurofilament light chain (NfL). METHODS: NfL and GFAP concentrations were measured in serum and CSF (sNFL/sGFAP and cNFL/cGFAP) in 157 patients (n = 106 with MS phenotype and n = 51 with other neurologic/somatoform diseases). Using multivariate linear regressions, BV was tested in the MS cohort as a predictor for each of the biomarkers while controlling for age, sex, MS phenotype, Expanded Disability Status Scale score, gadolinium-enhancing lesions, and acute relapse. In addition, overweight/obese patients (BMI ≥25 kg/m2) were compared with patients with BMI <25 kg/m2 using the general linear model. The analyses were repeated including the neurologic/somatoform controls. RESULTS: In the MS cohort, BV predicted sGFAP (ß = -0.301, p = 0.014). Overweight/obese patients with MS had lower sGFAP concentrations compared with patients with MS and BMI <25 kg/m2 (F = 4.732, p = 0.032). Repeating the analysis after adding patients with other neurologic/somatoform diseases did not change these findings (ß = -0.276, p = 0.009; F = 7.631, p = 0.006). Although sNfL was inversely correlated with BV (r = -0.275, p = 0.006) and body weight (r = -0.258, p = 0.010), those results did not remain significant after adjusting for covariates. BV and BMI were not associated with cGFAP or cNfL concentrations. DISCUSSION: These findings support the notion that the volume of distribution of sGFAP approximated by BV and BMI is a relevant variable and should therefore be controlled for when measuring sGFAP in MS, while this might not be necessary when measuring cGFAP concentrations.