Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Plant Physiol ; 193(3): 1970-1986, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37555435

RESUMO

The initial step of oxygenic photosynthesis is the thermodynamically challenging extraction of electrons from water and the release of molecular oxygen. This light-driven process, which is the basis for most life on Earth, is catalyzed by photosystem II (PSII) within the thylakoid membrane of photosynthetic organisms. The biogenesis of PSII requires a controlled step-wise assembly process of which the early steps are considered to be highly conserved between plants and their cyanobacterial progenitors. This assembly process involves auxiliary proteins, which are likewise conserved. In the present work, we used Arabidopsis (Arabidopsis thaliana) as a model to show that in plants, a eukaryote-exclusive assembly factor facilitates the early assembly step, during which the intrinsic antenna protein CP47 becomes associated with the PSII reaction center (RC) to form the RC47 intermediate. This factor, which we named DECREASED ELECTRON TRANSPORT AT PSII (DEAP2), works in concert with the conserved PHOTOSYNTHESIS AFFECTED MUTANT 68 (PAM68) assembly factor. The deap2 and pam68 mutants showed similar defects in PSII accumulation and assembly of the RC47 intermediate. The combined lack of both proteins resulted in a loss of functional PSII and the inability of plants to grow photoautotrophically on the soil. While overexpression of DEAP2 partially rescued the pam68 PSII accumulation phenotype, this effect was not reciprocal. DEAP2 accumulated at 20-fold higher levels than PAM68, together suggesting that both proteins have distinct functions. In summary, our results uncover eukaryotic adjustments to the PSII assembly process, which involve the addition of DEAP2 for the rapid progression from RC to RC47.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Eucariotos/metabolismo , Fotossíntese , Plantas/metabolismo
2.
Cell ; 132(2): 273-85, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18243102

RESUMO

During photosynthesis, two photoreaction centers located in the thylakoid membranes of the chloroplast, photosystems I and II (PSI and PSII), use light energy to mobilize electrons to generate ATP and NADPH. Different modes of electron flow exist, of which the linear electron flow is driven by PSI and PSII, generating ATP and NADPH, whereas the cyclic electron flow (CEF) only generates ATP and is driven by the PSI alone. Different environmental and metabolic conditions require the adjustment of ATP/NADPH ratios and a switch of electron distribution between the two photosystems. With the exception of PGR5, other components facilitating CEF are unknown. Here, we report the identification of PGRL1, a transmembrane protein present in thylakoids of Arabidopsis thaliana. Plants lacking PGRL1 show perturbation of CEF, similar to PGR5-deficient plants. We find that PGRL1 and PGR5 interact physically and associate with PSI. We therefore propose that the PGRL1-PGR5 complex facilitates CEF in eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/química , Trifosfato de Adenosina/biossíntese , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Biológicos , Dados de Sequência Molecular , Mutação , NADP/biossíntese , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Plastoquinona/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo
3.
Plant Cell ; 31(11): 2734-2750, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31444312

RESUMO

Key proteins of the photosynthetic complexes are encoded in the chloroplast genome and cotranslationally inserted into the thylakoid membrane. However, the molecular details of this process are largely unknown. Here, we demonstrate by ribosome profiling that the conserved chloroplast signal recognition particle subunit (cpSRP54) is required for efficient cotranslational targeting of several central photosynthetic proteins, such as the PSII PsbA (D1) subunit, in Arabidopsis (Arabidopsis thaliana). High-resolution analysis of membrane-associated and soluble ribosome footprints revealed that the SRP-dependent membrane targeting of PsbA is already initiated at an early translation step before exposure of the nascent chain from the ribosome. In contrast to cytosolic SRP, which contacts the ribosome close to the peptide tunnel exit site, analysis of the cpSRP54/ribosome binding interface revealed a direct interaction of cpSRP54 and the ribosomal subunit uL4, which is not located at the tunnel exit site but forms a part of the internal peptide tunnel wall by a loop domain. The plastid-specific C-terminal tail region of cpSRP54 plays a crucial role in uL4 binding. Our data indicate a novel mechanism of SRP-dependent membrane protein transport with the cpSRP54/uL4 interaction as a central element in early initiation of cotranslational membrane targeting.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Fotossíntese/fisiologia , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Citosol/metabolismo , Genoma de Cloroplastos , Modelos Moleculares , Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética , Tilacoides/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(33): 16631-16640, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358635

RESUMO

Photosystem II (PSII) undergoes frequent photooxidative damage that, if not repaired, impairs photosynthetic activity and growth. How photosynthetic organisms protect vulnerable PSII intermediate complexes during de novo assembly and repair remains poorly understood. Here, we report the genetic and biochemical characterization of chloroplast-located rubredoxin 1 (RBD1), a PSII assembly factor containing a redox-active rubredoxin domain and a single C-terminal transmembrane α-helix (TMH) domain. RBD1 is an integral thylakoid membrane protein that is enriched in stroma lamellae fractions with the rubredoxin domain exposed on the stromal side. RBD1 also interacts with PSII intermediate complexes containing cytochrome b559 Complementation of the Chlamydomonas reinhardtii (hereafter Chlamydomonas) RBD1-deficient 2pac mutant with constructs encoding RBD1 protein truncations and site-directed mutations demonstrated that the TMH domain is essential for de novo PSII assembly, whereas the rubredoxin domain is involved in PSII repair. The rubredoxin domain exhibits a redox midpoint potential of +114 mV and is proficient in 1-electron transfers to a surrogate cytochrome c in vitro. Reduction of oxidized RBD1 is NADPH dependent and can be mediated by ferredoxin-NADP+ reductase (FNR) in vitro. We propose that RBD1 participates, together with the cytochrome b559, in the protection of PSII intermediate complexes from photooxidative damage during de novo assembly and repair. This role of RBD1 is consistent with its evolutionary conservation among photosynthetic organisms and the fact that it is essential in photosynthetic eukaryotes.


Assuntos
Membranas Intracelulares/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Rubredoxinas/metabolismo , Tilacoides/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/ultraestrutura , Ferro/farmacologia , Modelos Biológicos , Oxirredução , Domínios Proteicos , Rubredoxinas/química , Tilacoides/efeitos dos fármacos , Tilacoides/ultraestrutura
5.
J Bacteriol ; 202(14)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32366590

RESUMO

Correct targeting of membrane proteins is essential for membrane integrity, cell physiology, and viability. Cotranslational targeting depends on the universally conserved signal recognition particle (SRP), which is a ribonucleoprotein complex comprised of the protein component Ffh and the 4.5S RNA in Escherichia coli About 25 years ago it was reported that Ffh is an unstable protein, but the underlying mechanism has never been explored. Here, we show that Lon is the primary protease responsible for adjusting the cellular Ffh level. When overproduced, Ffh is particularly prone to degradation during transition from exponential to stationary growth and the cellular Ffh amount is lowest in stationary phase. The Ffh protein consists of two domains, the NG domain, responsible for GTP hydrolysis and docking to the membrane receptor FtsY, and the RNA-binding M domain. We find that the NG domain alone is stable, whereas the isolated M domain is degraded. Consistent with the importance of Lon in this process, the M domain confers synthetic lethality to the lon mutant. The Ffh homolog from the model plant Arabidopsis thaliana, which forms a protein-protein complex rather than a protein-RNA complex, is stable, suggesting that the RNA-binding ability residing in the M domain of E. coli Ffh is important for proteolysis. Our results support a model in which excess Ffh not bound to 4.5S RNA is subjected to proteolysis until an appropriate Ffh concentration is reached. The differential proteolysis adjusts Ffh levels to the cellular demand and maintains cotranslational protein transport and membrane integrity.IMPORTANCE Since one-third of all bacterial proteins reside outside the cytoplasm, protein targeting to the appropriate address is an essential process. Cotranslational targeting to the membrane relies on the signal recognition particle (SRP), which is a protein-RNA complex in bacteria. We report that the protein component Ffh is a substrate of the Lon protease. Regulated proteolysis of Ffh provides a simple mechanism to adjust the concentration of the essential protein to the cellular demand. This is important because elevated or depleted SRP levels negatively impact protein targeting and bacterial fitness.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Protease La/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Protease La/genética , Domínios Proteicos , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética
6.
Photosynth Res ; 138(3): 303-313, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29956039

RESUMO

The light-harvesting chlorophyll a/b binding proteins (LHCP) belong to a large family of membrane proteins. They form the antenna complexes of photosystem I and II and function in light absorption and transfer of the excitation energy to the photosystems. As nuclear-encoded proteins, the LHCPs are imported into the chloroplast and further targeted to their final destination-the thylakoid membrane. Due to their hydrophobicity, the formation of the so-called 'transit complex' in the stroma is important to prevent their aggregation in this aqueous environment. The posttranslational LHCP targeting mechanism is well regulated through the interaction of various soluble and membrane-associated protein components and includes several steps: the binding of the LHCP to the heterodimeric cpSRP43/cpSRP54 complex to form the soluble transit complex; the docking of the transit complex to the SRP receptor cpFtsY and the Alb3 translocase at the membrane followed by the release and integration of the LHCP into the thylakoid membrane in a GTP-dependent manner. This review summarizes the molecular mechanisms and dynamics behind the posttranslational LHCP targeting to the thylakoid membrane of Arabidopsis thaliana.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Plantas/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Tilacoides/metabolismo , Multimerização Proteica , Transporte Proteico
7.
Biol Chem ; 398(5-6): 653-661, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28076289

RESUMO

Chloroplasts derive from a prokaryotic symbiont that lost most of its genes during evolution. As a result, the great majority of chloroplast proteins are encoded in the nucleus and are posttranslationally imported into the organelle. The chloroplast genome encodes only a few proteins. These include several multispan thylakoid membrane proteins which are synthesized on thylakoid-bound ribosomes and cotranslationally inserted into the membrane. During evolution, ancient prokaryotic targeting machineries were adapted and combined with novel targeting mechanisms to facilitate post- and cotranslational protein transport in chloroplasts. This review focusses on the chloroplast signal recognition particle (cpSRP) protein transport system, which has been intensively studied in higher plants. The cpSRP system derived from the prokaryotic SRP pathway, which mediates the cotranslational protein transport to the bacterial plasma membrane. Chloroplasts contain homologs of several components of the bacterial SRP system. The function of these conserved components in post- and/or cotranslational protein transport and chloroplast-specific modifications of these transport mechanisms are described. Furthermore, recent studies of cpSRP systems in algae and lower plants are summarized and their impact on understanding the evolution of the cpSRP system are discussed.


Assuntos
Bactérias/citologia , Bactérias/metabolismo , Cloroplastos/metabolismo , Evolução Molecular , Partícula de Reconhecimento de Sinal/metabolismo , Filogenia , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética
8.
J Biol Chem ; 290(21): 13104-14, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25833951

RESUMO

In bacteria, membrane proteins are targeted cotranslationally via a signal recognition particle (SRP). During the evolution of higher plant chloroplasts from cyanobacteria, the SRP pathway underwent striking adaptations that enable the posttranslational transport of the abundant light-harvesting chlorophyll-a/b-binding proteins (LHCPs). The conserved 54-kDa SRP subunit in higher plant chloroplasts (cpSRP54) is not bound to an SRP RNA, an essential SRP component in bacteria, but forms a stable heterodimer with the chloroplast-specific cpSRP43. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane whereby cpSRP43 plays a central role. This study shows that the cpSRP system in the green alga Chlamydomonas reinhardtii differs significantly from that of higher plants as cpSRP43 is not complexed to cpSRP54 in Chlamydomonas and cpSRP54 is not involved in LHCP recognition. This divergence is attributed to altered residues within the cpSRP54 tail and the second chromodomain of cpSRP43 that are crucial for the formation of the binding interface in Arabidopsis. These changes are highly conserved among chlorophytes, whereas all land plants contain cpSRP proteins with typical interaction motifs. These data demonstrate that the coevolution of LHCPs and cpSRP43 occurred independently of complex formation with cpSRP54 and that the interaction between cpSRP54 and cpSRP43 evolved later during the transition from chlorophytes to land plants. Furthermore, our data show that in higher plants a heterodimeric form of cpSRP is required for the formation of a low molecular weight transit complex with LHCP.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Processamento de Proteína Pós-Traducional , Partícula de Reconhecimento de Sinal/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Embriófitas , Proteínas de Ligação ao GTP/metabolismo , Imunoprecipitação , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
9.
Biochem J ; 468(2): 315-24, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25803492

RESUMO

Photosystem II (PS II) is a multi-subunit complex localized in the thylakoid membrane that performs the light-dependent photosynthetic charge separation. The PS II reaction centre comprises, among others, the D1 protein. De novo synthesis and repair of PS II require efficient mechanisms for transport and insertion of plastid encoded D1 into the thylakoid membrane. To elucidate the process of D1 insertion, we used an in vitro translation system derived from pea chloroplasts to reconstitute the D1 insertion. Thereby, truncated D1 encoding psbA mRNAs lacking a stop codon were translated in the presence of thylakoid membranes and the translation was stalled by addition of chloramphenicol. The generated ribosome nascent chain complexes (RNCs) were tightly associated with the thylakoids. Subsequently, these D1 insertion intermediates were enriched from solubilized thylakoids by sucrose cushion centrifugation. Immunological analyses demonstrated the presence of the cpSec translocase, Alb3, cpFtsY, cpSRP54 and Vipp1 (vesicle-inducing protein in plastids 1) in the enriched D1 insertion intermediates. A complex formation between cpSecY, Alb3, cpFtsY and Vipp1 in thylakoid membranes was shown by gel filtration chromatography, BN (Blue Native)/SDS-PAGE and co-immunoprecipitation experiments. Furthermore, a stimulating effect of recombinant Vipp1 on the formation of a D1 insertion intermediate was observed in vitro. These results suggest a co-operative function of these proteins in D1 insertion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteína do Fotossistema II/biossíntese , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Arabidopsis/metabolismo , Cromatografia em Gel , Imunoprecipitação , Técnicas In Vitro , Luz , Pisum sativum/metabolismo , Biossíntese de Proteínas
10.
Plant J ; 78(2): 344-56, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24612058

RESUMO

Assembly of photosystem II (PSII) occurs sequentially and requires several auxiliary proteins, such as ALB3 (ALBINO3). Here, we describe the role of the Arabidopsis thaliana thylakoid membrane protein Tellurite resistance C (AtTerC) in this process. Knockout of AtTerC was previously shown to be seedling-lethal. This phenotype was rescued by expressing TerC fused C-terminally to GFP in the terc-1 background, and the resulting terc-1TerC- GFP line and an artificial miRNA-based knockdown allele (amiR-TerC) were used to analyze the TerC function. The alterations in chlorophyll fluorescence and thylakoid ultrastructure observed in amiR-TerC plants and terc-1TerC- GFP were attributed to defects in PSII. We show that this phenotype resulted from a reduction in the rate of de novo synthesis of PSII core proteins, but later steps in PSII biogenesis appeared to be less affected. Yeast two-hybrid assays showed that TerC interacts with PSII proteins. In particular, its interaction with the PSII assembly factor ALB3 has been demonstrated by co-immunoprecipitation. ALB3 is thought to assist in incorporation of CP43 into PSII via interaction with Low PSII Accumulation2 (LPA2) Low PSII Accumulation3 (LPA3). Homozygous lpa2 mutants expressing amiR-TerC displayed markedly exacerbated phenotypes, leading to seedling lethality, indicating an additive effect. We propose a model in which TerC, together with ALB3, facilitates de novo synthesis of thylakoid membrane proteins, for instance CP43, at the membrane insertion step.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Proteínas de Membrana/fisiologia , Complexo de Proteína do Fotossistema II/biossíntese , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fenótipo , Tilacoides/metabolismo
11.
Plant Physiol ; 165(1): 207-26, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24664203

RESUMO

The chloroplast F1Fo-ATP synthase/ATPase (cpATPase) couples ATP synthesis to the light-driven electrochemical proton gradient. The cpATPase is a multiprotein complex and consists of a membrane-spanning protein channel (comprising subunit types a, b, b', and c) and a peripheral domain (subunits α, ß, γ, δ, and ε). We report the characterization of the Arabidopsis (Arabidopsis thaliana) CONSERVED ONLY IN THE GREEN LINEAGE160 (AtCGL160) protein (AtCGL160), conserved in green algae and plants. AtCGL160 is an integral thylakoid protein, and its carboxyl-terminal portion is distantly related to prokaryotic ATP SYNTHASE PROTEIN1 (Atp1/UncI) proteins that are thought to function in ATP synthase assembly. Plants without AtCGL160 display an increase in xanthophyll cycle activity and energy-dependent nonphotochemical quenching. These photosynthetic perturbations can be attributed to a severe reduction in cpATPase levels that result in increased acidification of the thylakoid lumen. AtCGL160 is not an integral cpATPase component but is specifically required for the efficient incorporation of the c-subunit into the cpATPase. AtCGL160, as well as a chimeric protein containing the amino-terminal part of AtCGL160 and Synechocystis sp. PCC6803 Atp1, physically interact with the c-subunit. We conclude that AtCGL160 and Atp1 facilitate the assembly of the membranous part of the cpATPase in their hosts, but loss of their functions provokes a unique compensatory response in each organism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Membranas Intracelulares/enzimologia , Proteínas das Membranas dos Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Clorofila/metabolismo , Clorofila A , DNA Bacteriano/genética , Transporte de Elétrons , Fluorescência , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Termodinâmica , Proteínas das Membranas dos Tilacoides/química , Tilacoides/metabolismo , Transcrição Gênica
12.
Plant Cell ; 24(12): 4819-36, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23275580

RESUMO

The protein targeting signal recognition particle (SRP) pathway in chloroplasts of higher plants has undergone dramatic evolutionary changes. It disposed of its RNA, which is an essential SRP component in bacteria, and uses a unique chloroplast-specific protein cpSRP43. Nevertheless, homologs of the conserved SRP54 and the SRP receptor, FtsY, are present in higher plant chloroplasts. In this study, we analyzed the phylogenetic distribution of SRP components in photosynthetic organisms to elucidate the evolution of the SRP system. We identified conserved plastid SRP RNAs within all nonspermatophyte land plant lineages and in all chlorophyte branches. Furthermore, we show the simultaneous presence of cpSRP43 in these organisms. The function of this novel SRP system was biochemically and structurally characterized in the moss Physcomitrella patens. We show that P. patens chloroplast SRP (cpSRP) RNA binds cpSRP54 but has lost the ability to significantly stimulate the GTPase cycle of SRP54 and FtsY. Furthermore, the crystal structure at 1.8-Å resolution and the nucleotide specificity of P. patens cpFtsY was determined and compared with bacterial FtsY and higher plant chloroplast FtsY. Our data lead to the view that the P. patens cpSRP system occupies an intermediate position in the evolution from bacterial-type SRP to higher plant-type cpSRP system.


Assuntos
Evolução Biológica , Cloroplastos/genética , Plastídeos/genética , RNA de Plantas/genética , Fotossíntese/genética , Fotossíntese/fisiologia
13.
Nat Commun ; 15(1): 2792, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555362

RESUMO

Plant photosynthesis contains two functional modules, the light-driven reactions in the thylakoid membrane and the carbon-fixing reactions in the chloroplast stroma. In nature, light availability for photosynthesis often undergoes massive and rapid fluctuations. Efficient and productive use of such variable light supply requires an instant crosstalk and rapid synchronization of both functional modules. Here, we show that this communication involves the stromal exposed C-terminus of the thylakoid K+-exchange antiporter KEA3, which regulates the ΔpH across the thylakoid membrane and therefore pH-dependent photoprotection. By combining in silico, in vitro, and in vivo approaches, we demonstrate that the KEA3 C-terminus senses the energy state of the chloroplast in a pH-dependent manner and regulates transport activity in response. Together our data pinpoint a regulatory feedback loop by which the stromal energy state orchestrates light capture and photoprotection via multi-level regulation of KEA3.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tilacoides/metabolismo , Prótons , Antiporters/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fotossíntese/fisiologia , Cloroplastos/metabolismo , Luz
14.
Plant Cell ; 22(10): 3439-60, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20923938

RESUMO

Photosystem II (PSII) is a multiprotein complex that functions as a light-driven water:plastoquinone oxidoreductase in photosynthesis. Assembly of PSII proceeds through a number of distinct intermediate states and requires auxiliary proteins. The photosynthesis affected mutant 68 (pam68) of Arabidopsis thaliana displays drastically altered chlorophyll fluorescence and abnormally low levels of the PSII core subunits D1, D2, CP43, and CP47. We show that these phenotypes result from a specific decrease in the stability and maturation of D1. This is associated with a marked increase in the synthesis of RC (the PSII reaction center-like assembly complex) at the expense of PSII dimers and supercomplexes. PAM68 is a conserved integral membrane protein found in cyanobacterial and eukaryotic thylakoids and interacts in split-ubiquitin assays with several PSII core proteins and known PSII assembly factors. Biochemical analyses of thylakoids from Arabidopsis and Synechocystis sp PCC 6803 suggest that, during PSII assembly, PAM68 proteins associate with an early intermediate complex that might contain D1 and the assembly factor LPA1. Inactivation of cyanobacterial PAM68 destabilizes RC but does not affect larger PSII assembly complexes. Our data imply that PAM68 proteins promote early steps in PSII biogenesis in cyanobacteria and plants, but their inactivation is differently compensated for in the two classes of organisms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Alinhamento de Sequência , Synechocystis/genética , Synechocystis/metabolismo , Tilacoides/genética
15.
J Biol Chem ; 286(40): 35187-95, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21832051

RESUMO

Posttranslational targeting of the light-harvesting chlorophyll a,b-binding proteins depends on the function of the chloroplast signal recognition particle, its receptor cpFtsY, and the translocase Alb3. The thylakoid membrane protein Alb3 of Arabidopsis chloroplasts belongs to the evolutionarily conserved YidC/Oxa1/Alb3 protein family; the members of this family facilitate the insertion, folding, and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here, we analyzed the interaction sites of full-length Alb3 with the cpSRP pathway component cpSRP43 by using in vitro and in vivo studies. Bimolecular fluorescence complementation and Alb3 proteoliposome studies showed that the interaction of cpSRP43 is dependent on a binding domain in the C terminus of Alb3 as well as an additional membrane-embedded binding site in the fifth transmembrane domain (TMD5) of Alb3. The C-terminal binding domain was mapped to residues 374-388, and the binding domain within TMD5 was mapped to residues 314-318 located close to the luminal end of TMD5. A direct binding between cpSRP43 and these binding motifs was shown by pepspot analysis. Further studies using blue-native gel electrophoresis revealed that full-length Alb3 is able to form dimers. This finding and the identification of a membrane-embedded cpSRP43 binding site in Alb3 support a model in which cpSRP43 inserts into a dimeric Alb3 translocation pore during cpSRP-dependent delivery of light-harvesting chlorophyll a,b-binding proteins.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Dimerização , Lipossomos/metabolismo , Dados de Sequência Molecular , Plasmídeos/metabolismo , Ligação Proteica , Transporte Proteico , Homologia de Sequência de Aminoácidos , Partícula de Reconhecimento de Sinal/genética , Tilacoides/metabolismo
16.
Nat Commun ; 12(1): 3941, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168134

RESUMO

In plants, inactivation of either of the thylakoid proteins PGR5 and PGRL1 impairs cyclic electron flow (CEF) around photosystem I. Because PGR5 is unstable in the absence of the redox-active PGRL1, but not vice versa, PGRL1 is thought to be essential for CEF. However, we show here that inactivation of PGRL2, a distant homolog of PGRL1, relieves the need for PGRL1 itself. Conversely, high levels of PGRL2 destabilize PGR5 even when PGRL1 is present. In the absence of both PGRL1 and PGRL2, PGR5 alters thylakoid electron flow and impairs plant growth. Consequently, PGR5 can operate in CEF on its own, and is the target of the CEF inhibitor antimycin A, but its activity must be modulated by PGRL1. We conclude that PGRL1 channels PGR5 activity, and that PGRL2 triggers the degradation of PGR5 when the latter cannot productively interact with PGRL1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Antimicina A/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Fluorescência Verde/genética , Luz , Proteínas de Membrana/genética , Mutação , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Plantas Geneticamente Modificadas , Estabilidade Proteica
17.
Front Plant Sci ; 12: 781857, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003166

RESUMO

Members of the Oxa1/YidC/Alb3 protein family are involved in the insertion, folding, and assembly of membrane proteins in mitochondria, bacteria, and chloroplasts. The thylakoid membrane protein Alb3 mediates the chloroplast signal recognition particle (cpSRP)-dependent posttranslational insertion of nuclear-encoded light harvesting chlorophyll a/b-binding proteins and participates in the biogenesis of plastid-encoded subunits of the photosynthetic complexes. These subunits are cotranslationally inserted into the thylakoid membrane, yet very little is known about the molecular mechanisms underlying docking of the ribosome-nascent chain complexes to the chloroplast SecY/Alb3 insertion machinery. Here, we show that nanodisc-embedded Alb3 interacts with ribosomes, while the homolog Alb4, also located in the thylakoid membrane, shows no ribosome binding. Alb3 contacts the ribosome with its C-terminal region and at least one additional binding site within its hydrophobic core region. Within the C-terminal region, two conserved motifs (motifs III and IV) are cooperatively required to enable the ribosome contact. Furthermore, our data suggest that the negatively charged C-terminus of the ribosomal subunit uL4c is involved in Alb3 binding. Phylogenetic analyses of uL4 demonstrate that this region newly evolved in the green lineage during the transition from aquatic to terrestrial life.

18.
FEBS Lett ; 582(21-22): 3223-9, 2008 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-18755190

RESUMO

The chloroplast signal recognition particle (cpSRP) consists of a conserved 54 kDa subunit (cpSRP54) and a unique 43 kDa subunit (cpSRP43) but lacks SRP-RNA, an essential and universally conserved component of cytosolic SRPs. High sequence similarity exists between cpSRP54 and bacterial SRP54 except for a plant-specific C-terminal extension containing the cpSRP43-binding motif. We found that cpSRP54 of higher plants lacks the ability to bind SRP-RNA because of two amino acid substitutions within a region corresponding to the RNA binding domain of cytosolic SRP54, whereas the C-terminal extension does not affect RNA binding. Phylogenetic analysis revealed that these mutations occur in the cpSRP54 homologues of higher plants but not in most algae.


Assuntos
Substituição de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Evolução Molecular , Proteínas de Ligação ao GTP/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Motivos de Aminoácidos , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Proteínas de Cloroplastos , Sequência Conservada , Proteínas de Ligação ao GTP/classificação , Proteínas de Ligação ao GTP/genética , Dados de Sequência Molecular , Mutação , RNA Bacteriano/metabolismo , RNA de Cloroplastos/metabolismo
19.
FEBS Lett ; 580(13): 3107-11, 2006 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-16678173

RESUMO

Chloroplasts of higher plants contain a unique signal recognition particle (cpSRP) that consists of two proteins, cpSRP54 and cpSRP43. CpSRP43 is composed of a four ankyrin repeat domain and three functionally distinct chromodomains (CDs). In this report we confirm previously published data that the second chromodomain (CD2) provides the primary binding site for cpSRP54. However, quantitative binding analysis demonstrates that cpSRP54 binds to CD2 significantly less efficiently than it binds to full-length cpSRP43. Further analysis of the binding interface of cpSRP by mutagenesis studies and a pepscan approach demonstrates that the C-terminal alpha-helix of CD2 facilitates binding to cpSRP54.


Assuntos
Partícula de Reconhecimento de Sinal/metabolismo , Sequência de Aminoácidos , Aminoácidos Acídicos/genética , Aminoácidos Acídicos/metabolismo , Proteínas de Cloroplastos , Cloroplastos/metabolismo , Análise Mutacional de DNA , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Mutagênese , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Partícula de Reconhecimento de Sinal/genética
20.
PLoS One ; 11(11): e0166818, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27861610

RESUMO

The bacterial signal recognition particle (SRP) mediates the cotranslational targeting of membrane proteins and is a high affinity complex consisting of a SRP54 protein subunit (Ffh) and an SRP RNA. The chloroplast SRP (cpSRP) pathway has adapted throughout evolution to enable the posttranslational targeting of the light harvesting chlorophyll a/b binding proteins (LHCPs) to the thylakoid membrane. In spermatophytes (seed plants), the cpSRP lacks the SRP RNA and is instead formed by a high affinity interaction of the conserved 54-kD subunit (cpSRP54) with the chloroplast-specific cpSRP43 protein. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane. However, in contrast to spermatophytes, plastid SRP RNAs were identified within all streptophyte lineages and in all chlorophyte branches. Furthermore, it was shown that cpSRP43 does not interact with cpSRP54 in chlorophytes (e.g., Chlamydomonas reinhardtii). In this study, we biochemically characterized the cpSRP system of the charophyte Chaetosphaeridium globosum and the bryophyte Physcomitrella patens. Interaction studies demonstrate low affinity binding of cpSRP54 to cpSRP43 (Kd ~10 µM) in Chaetosphaeridium globosum and Physcomitrella patens as well as relatively low affinity binding of cpSRP54 to cpSRP RNA (Kd ~1 µM) in Physcomitrella patens. CpSRP54/cpSRP43 complex formation in charophytes is supported by the finding that specific alterations in the second chromodomain of cpSRP43, that are conserved within charophytes and absent in land plants, do not interfere with cpSRP54 binding. Furthermore, our data show that the elongated apical loop structure of the Physcomitrella patens cpSRP RNA contributes to the low binding affinity between cpSRP54 and the cpSRP RNA.


Assuntos
Cloroplastos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Estreptófitas/metabolismo , Sequência de Aminoácidos , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Transporte Proteico , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/metabolismo , Partícula de Reconhecimento de Sinal/química , Partícula de Reconhecimento de Sinal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA