Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Child Dev ; 94(3): e166-e180, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36716199

RESUMO

Consonants and vowels differentially contribute to lexical acquisition. From 8 months on, infants' preferential reliance on consonants has been shown to predict their lexical outcome. Here, the predictive value of German-learning infants' (n = 58, 29 girls, 29 boys) trajectories of consonant and vowel perception, indicated by the electrophysiological mismatch response, across 2, 6, and 10 months for later lexical acquisition was studied. The consonant-perception trajectory from 2 to 6 months (ß = -2.95) and 6 to 10 months (ß = -.91), but not the vowel-perception trajectory, significantly predicted receptive vocabulary at 12 months. These results reveal an earlier predictive value of consonant perception for word learning than previously found, and a particular role of the longitudinal maturation of this skill in lexical acquisition.


Assuntos
Fonética , Percepção da Fala , Masculino , Feminino , Lactente , Humanos , Aprendizagem , Vocabulário , Aprendizagem Verbal
2.
Neuroimage ; 242: 118452, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358655

RESUMO

During childhood, the brain is gradually converging to the efficient functional architecture observed in adults. How the brain's functional architecture evolves with age, particularly in young children, is however, not well understood. We examined the functional connectivity of the core language regions, in association with cortical growth and language abilities, in 175 young children in the age range of 4 to 9 years. We analyzed the brain's developmental changes using resting-state functional and T1-weighted structural magnetic resonance imaging data. The results showed increased functional connectivity strength with age between the pars triangularis of the left inferior frontal gyrus and left temporoparietal regions (cohen's d = 0.54, CI: 0.24 - 0.84), associated with children's language abilities. Stronger functional connectivity between bilateral prefrontal and temporoparietal regions was associated with better language abilities regardless of age. In addition, the stronger functional connectivity between the left inferior frontal and temporoparietal regions was associated with larger surface area and thinner cortical thickness in these regions, which in turn was associated with superior language abilities. Thus, using functional and structural brain indices, coupled with behavioral measures, we elucidate the association of functional language network development, language ability, and cortical growth, thereby adding to our understanding of the neural basis of language acquisition in young children.


Assuntos
Mapeamento Encefálico/métodos , Desenvolvimento da Linguagem , Vias Neurais/diagnóstico por imagem , Criança , Pré-Escolar , Cognição , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Córtex Pré-Frontal/diagnóstico por imagem
3.
Neuroimage ; 211: 116633, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061802

RESUMO

Developmental dyslexia, a severe deficit in literacy learning, is a neurodevelopmental learning disorder. Yet, it is not clear whether existing neurobiological accounts of dyslexia capture potential predispositions of the deficit or consequences of reduced reading experience. Here, we longitudinally followed 32 children from preliterate to school age using functional and structural magnetic resonance imaging techniques. Based on standardised and age-normed reading and spelling tests administered at school age, children were classified as 16 dyslexic participants and 16 controls. This longitudinal design allowed us to disentangle possible neurobiological predispositions for developing dyslexia from effects of individual differences in literacy experience. In our sample, the disorder can be predicted already before literacy learning from auditory cortex gyrification and aberrant downstream connectivity within the speech processing system. These results provide evidence for the notion that dyslexia may originate from an atypical maturation of the speech network that precedes literacy instruction.


Assuntos
Córtex Auditivo/crescimento & desenvolvimento , Desenvolvimento Infantil/fisiologia , Conectoma , Dislexia/fisiopatologia , Idioma , Imageamento por Ressonância Magnética , Rede Nervosa/fisiopatologia , Percepção da Fala/fisiologia , Criança , Pré-Escolar , Suscetibilidade a Doenças/diagnóstico por imagem , Suscetibilidade a Doenças/fisiopatologia , Dislexia/diagnóstico por imagem , Feminino , Humanos , Individualidade , Alfabetização , Estudos Longitudinais , Masculino , Rede Nervosa/diagnóstico por imagem
4.
Neurobiol Learn Mem ; 171: 107225, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32251723

RESUMO

Becoming a successful speaker depends on acquiring and learning grammatical dependencies between neighboring and non-neighboring linguistic elements (non-adjacent dependencies; NADs). Previous studies have demonstrated children's and adults' ability to distinguish NADs from NAD violations right after familiarization. However, demonstrating NAD recall after retention is crucial to demonstrate a lasting effect of NAD learning. We tested 7-year-olds' NAD learning in a natural, non-native language on one day and NAD recall on the next day by means of event-related potentials (ERPs). Our results revealed ERPs with a more positive amplitude to NAD violations than correct NADs after familiarization on day one, but ERPs with a more negative amplitude to NAD violations on day two. This change from more positive to more negative ERPs to NAD violations possibly indicates that children's representations of NADs changed during an overnight retention period, potentially associated with children's NAD learning. Indeed, our descriptive analyses showed that both ERP patterns (i.e., day one: positive, day two: negative) were related to stronger behavioral improvement (i.e., more correct answers on day two compared to day one) in a grammaticality judgment task from day one to day two. We suggest these findings to indicate that children successfully built associative representations of NADs on day one and then strengthened these associations during overnight retention, revealing NAD recall on day two. The present results suggest that 7-year-olds readily track NADs in a natural, non-native language and are able to recall NADs after a retention period involving sleep, providing evidence of a lasting effect of NAD learning.


Assuntos
Encéfalo/fisiologia , Potenciais Evocados/fisiologia , Rememoração Mental/fisiologia , Criança , Eletroencefalografia , Feminino , Humanos , Idioma , Masculino
5.
Neuroimage ; 191: 36-48, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30738206

RESUMO

Language skills increase as the brain matures. Language processing, especially the comprehension of syntactically complex sentences, is supported by a brain network involving functional interactions between left inferior frontal and left temporal regions in the adult brain, with reduced functional interactions in children. Here, we examined the gray matter covariance of the cortical thickness network relevant for syntactic processing in relation to language abilities in preschool children (i.e., 5-year-olds) and analyzed the developmental changes of the cortical thickness covariance cross-sectionally by comparing preschool children, school age children, and adults. Further, to demonstrate the agreement of cortical thickness covariance and white matter connectivity, tractography analyses were performed. Covariance of language-relevant seeds in preschoolers was strongest in contralateral homologous regions. A more adult-like, significant cortical thickness covariance between left frontal and left temporal regions, however, was observed in preschoolers with advanced syntactic language abilities. By comparing the three age groups, we could show that the cortical thickness covariance pattern from the language-associated seeds develops progressively from restricted in preschoolers to widely-distributed brain regions in adults. In addition, our results suggest that the cortical thickness covariance difference of the left inferior frontal gyrus to superior temporal gyrus/sulcus between preschoolers and adults is accompanied by distinctions in the white matter tracts linking these two areas, with more mature white matter in the arcuate fasciculus in adults compared to preschoolers. These findings provide anatomical evidence for developmental changes in language both from the perspective of gray matter structure co-variation within the language network and white matter maturity as the anatomical substrate for the structural covariance.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Desenvolvimento da Linguagem , Vias Neurais/crescimento & desenvolvimento , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino
6.
Brain ; 139(Pt 10): 2792-2803, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27343255

RESUMO

Literacy learning depends on the flexibility of the human brain to reconfigure itself in response to environmental influences. At the same time, literacy and disorders of literacy acquisition are heritable and thus to some degree genetically predetermined. Here we used a multivariate non-parametric genetic model to relate literacy-associated genetic variants to grey and white matter volumes derived by voxel-based morphometry in a cohort of 141 children. Subsequently, a sample of 34 children attending grades 4 to 8, and another sample of 20 children, longitudinally followed from kindergarten to first grade, were classified as dyslexics and controls using linear binary support vector machines. The NRSN1-associated grey matter volume of the 'visual word form area' achieved a classification accuracy of ~ 73% in literacy-experienced students and distinguished between later dyslexic individuals and controls with an accuracy of 75% at kindergarten age. These findings suggest that the cortical plasticity of a region vital for literacy might be genetically modulated, thereby potentially preconstraining literacy outcome. Accordingly, these results could pave the way for identifying and treating the most common learning disorder before it manifests itself in school.

7.
Neuroimage ; 143: 378-386, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27608602

RESUMO

BACKGROUND: Recent studies suggest that neurobiological anomalies are already detectable in pre-school children with a family history of developmental dyslexia (DD). However, there is a lack of longitudinal studies showing a direct link between those differences at a preliterate age and the subsequent literacy difficulties seen in school. It is also not clear whether the prediction of DD in pre-school children can be significantly improved when considering neurobiological predictors, compared to models based on behavioral literacy precursors only. METHODS: We recruited 53 pre-reading children either with (N=25) or without a family risk of DD (N=28). Quantitative T1 MNI data and literacy precursor abilities were assessed at kindergarten age. A subsample of 35 children was tested for literacy skills either one or two years later, that is, either in first or second grade. RESULTS: The group comparison of quantitative T1 measures revealed significantly higher T1 intensities in the left anterior arcuate fascicle (AF), suggesting reduced myelin concentration in preliterate children at risk of DD. A logistic regression showed that DD can be predicted significantly better (p=.024) when neuroanatomical differences between groups are used as predictors (80%) compared to a model based on behavioral predictors only (63%). The Wald statistic confirmed that the T1 intensity of the left AF is a statistically significant predictor of DD (p<.05). CONCLUSIONS: Our longitudinal results provide evidence for the hypothesis that neuroanatomical anomalies in children with a family risk of DD are related to subsequent problems in acquiring literacy. Particularly, solid white matter organization in the left anterior arcuate fascicle seems to play a pivotal role.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Dislexia/diagnóstico , Substância Cinzenta/diagnóstico por imagem , Testes Neuropsicológicos , Substância Branca/diagnóstico por imagem , Criança , Pré-Escolar , Dislexia/diagnóstico por imagem , Dislexia/fisiopatologia , Diagnóstico Precoce , Imagem Ecoplanar/métodos , Feminino , Seguimentos , Humanos , Masculino , Prognóstico
8.
Dev Sci ; 19(6): 1020-1034, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26489969

RESUMO

Successful communication in everyday life crucially involves the processing of auditory and visual components of speech. Viewing our interlocutor and processing visual components of speech facilitates speech processing by triggering auditory processing. Auditory phoneme processing, analyzed by event-related brain potentials (ERP), has been shown to be associated with impairments in reading and spelling (i.e. developmental dyslexia), but visual aspects of phoneme processing have not been investigated in individuals with such deficits. The present study analyzed the passive visual Mismatch Response (vMMR) in school children with and without developmental dyslexia in response to video-recorded mouth movements pronouncing syllables silently. Our results reveal that both groups of children showed processing of visual speech stimuli, but with different scalp distribution. Children without developmental dyslexia showed a vMMR with typical posterior distribution. In contrast, children with developmental dyslexia showed a vMMR with anterior distribution, which was even more pronounced in children with severe phonological deficits and very low spelling abilities. As anterior scalp distributions are typically reported for auditory speech processing, the anterior vMMR of children with developmental dyslexia might suggest an attempt to anticipate potentially upcoming auditory speech information in order to support phonological processing, which has been shown to be deficient in children with developmental dyslexia.


Assuntos
Dislexia/fisiopatologia , Expressão Facial , Gestos , Fonética , Conscientização , Criança , Potenciais Evocados , Humanos , Percepção da Fala/fisiologia
9.
Neuroimage ; 118: 414-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26080313

RESUMO

Phonological awareness is the best-validated predictor of reading and spelling skill and therefore highly relevant for developmental dyslexia. Prior imaging genetics studies link several dyslexia risk genes to either brain-functional or brain-structural factors of phonological deficits. However, coherent evidence for genetic associations with both functional and structural neural phenotypes underlying variation in phonological awareness has not yet been provided. Here we demonstrate that rs11100040, a reported modifier of SLC2A3, is related to the functional connectivity of left fronto-temporal phonological processing areas at resting state in a sample of 9- to 12-year-old children. Furthermore, we provide evidence that rs11100040 is related to the fractional anisotropy of the arcuate fasciculus, which forms the structural connection between these areas. This structural connectivity phenotype is associated with phonological awareness, which is in turn associated with the individual retrospective risk scores in an early dyslexia screening as well as to spelling. These results suggest a link between a dyslexia risk genotype and a functional as well as a structural neural phenotype, which is associated with a phonological awareness phenotype. The present study goes beyond previous work by integrating genetic, brain-functional and brain-structural aspects of phonological awareness within a single approach. These combined findings might be another step towards a multimodal biomarker for developmental dyslexia.


Assuntos
Conscientização/fisiologia , Dislexia/genética , Dislexia/fisiopatologia , Lobo Frontal/fisiopatologia , Lobo Temporal/fisiopatologia , Mapeamento Encefálico , Criança , Imagem de Tensor de Difusão , Dislexia/patologia , Feminino , Lobo Frontal/patologia , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Fonética , Polimorfismo de Nucleotídeo Único , Psicometria , Leitura , Lobo Temporal/patologia
10.
J Psycholinguist Res ; 44(2): 201-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24531748

RESUMO

Event knowledge includes persons and objects and their roles in the event. This study investigated whether the progression of patients from a source to a resulting feature, such as the progression of hair that is cut from long to short, forms part of event representations. Subjects were presented with an event prime followed by two adjectives and asked to judge whether the adjectives were interrelated. Results showed that the semantic interrelation of two adjectives is recognized faster and more accurately when the adjectives denote source and resulting features of the patient of the primed event ("cutting": long-short). Furthermore, we found that presenting an event-related adjective in combination with an unrelated adjective makes it more difficult to recognize that the two adjectives are not interrelated, but only when the event-related adjective denotes a source feature. We argue that an inference mechanism automatically completes the representation of the event. We conclude that source and resulting features are represented in a goal-directed and chronological way.


Assuntos
Conhecimento , Tempo de Reação/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA