Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomater Sci ; 9(16): 5640-5651, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34254604

RESUMO

Biphasic calcium phosphate (BCP) granules are osteoconductive biomaterials used in clinics to favor bone reconstruction. Yet, poor cohesivity, injectability and mechanical properties restrain their use as bone fillers. In this study, we incorporated BCP granules into in situ forming silanized hyaluronic acid (Si-HA) and hydroxypropylmethylcellulose (Si-HPMC) hydrogels. Hydrogel composites were shown to be easily injectable (F < 30 N), with fast hardening properties (<5 min), and similar mechanical properties (E∼ 60 kPa). In vivo, both hydrogels were well tolerated by the host, but showed different biodegradability with Si-HA gels being partially degraded after 21d, while Si-HPMC gels remained stable. Both composites were easily injected into critical size rabbit defects and remained cohesive. After 4 weeks, Si-HPMC/BCP led to poor bone healing due to a lack of degradation. Conversely, Si-HA/BCP composites were fully degraded and beneficially influenced bone regeneration by increasing the space available for bone ingrowth, and by accelerating BCP granules turnover. Our study demonstrates that the degradation rate is key to control bone regeneration and that Si-HA/BCP composites are promising biomaterials to regenerate bone defects.


Assuntos
Substitutos Ósseos , Hidrogéis , Animais , Regeneração Óssea , Fosfatos de Cálcio , Ácido Hialurônico , Hidroxiapatitas , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA