Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 43(8): 1412-1428, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37317853

RESUMO

BACKGROUND: During infectious diseases, proinflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung, the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG (erythroblast transformation-specific-related gene) as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. METHODS: Cytokine-dependent ubiquitination and proteasomal degradation of ERG were analyzed in cultured HUVECs (human umbilical vein ECs). Systemic administration of TNFα (tumor necrosis factor alpha) or the bacterial cell wall component lipopolysaccharide was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs (Ergfl/fl;Cdh5[PAC]-CreERT2), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. RESULTS: In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or lipopolysaccharide resulted in a rapid and substantial degradation of ERG within lung ECs but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Ergfl/fl;Cdh5(PAC)-CreERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek-a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. CONCLUSIONS: Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases.


Assuntos
Doenças Transmissíveis , Fatores de Transcrição , Humanos , Camundongos , Animais , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Citocinas/metabolismo , Doenças Transmissíveis/metabolismo , Células Cultivadas , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
2.
Mol Pharmacol ; 104(4): 174-186, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37474305

RESUMO

Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging process restricts the availability of the chemokine agonist CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we determined that GRK5 phosphorylation of ACKR3 results in more efficient chemokine scavenging and ß-arrestin recruitment than phosphorylation by GRK2 in HEK293 cells. However, co-activation of CXCR4-enhanced ACKR3 phosphorylation by GRK2 through the liberation of Gßγ, an accessory protein required for efficient GRK2 activity. The results suggest that ACKR3 "senses" CXCR4 activation through a GRK2-dependent crosstalk mechanism, which enables CXCR4 to influence the efficiency of CXCL12 scavenging and ß-arrestin recruitment to ACKR3. Surprisingly, we also found that despite the requirement for phosphorylation and the fact that most ligands promote ß-arrestin recruitment, ß-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet-to-be-determined function for these adapter proteins. Since ACKR3 is also a receptor for CXCL11 and opioid peptides, these data suggest that such crosstalk may also be operative in cells with CXCR3 and opioid receptor co-expression. Additionally, kinase-mediated receptor cross-regulation may be relevant to other atypical and G protein-coupled receptors that share common ligands. SIGNIFICANCE STATEMENT: The atypical receptor ACKR3 indirectly regulates CXCR4-mediated cell migration by scavenging their shared agonist CXCL12. Here, we show that scavenging and ß-arrestin recruitment by ACKR3 are primarily dependent on phosphorylation by GRK5. However, we also show that CXCR4 co-activation enhances the contribution of GRK2 by liberating Gßγ. This phosphorylation crosstalk may represent a common feedback mechanism between atypical and G protein-coupled receptors with shared ligands for regulating the efficiency of scavenging or other atypical receptor functions.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Humanos , beta-Arrestinas/metabolismo , Quimiocina CXCL12/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Células HEK293 , Ligantes , Fosforilação , Ligação Proteica , Receptores CXCR4/metabolismo
3.
J Biol Chem ; 298(9): 102305, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933019

RESUMO

E3-SCF (Skp1/cullin-1/F-box protein) polyubiquitin ligases activate the proteasomal degradation of over a thousand proteins, but the evolutionary diversification of the F-box protein (FBP) family of substrate receptor subunits has challenged their elucidation in protists. Here, we expand the FBP candidate list in the social amoeba Dictyostelium and show that the Skp1 interactome is highly remodeled as cells transition from growth to multicellular development. Importantly, a subset of candidate FBPs was less represented when the posttranslational hydroxylation and glycosylation of Skp1 was abrogated by deletion of the O2-sensing Skp1 prolyl hydroxylase PhyA. A role for this Skp1 modification for SCF activity was indicated by partial rescue of development, which normally depends on high O2 and PhyA, of phyA-KO cells by proteasomal inhibitors. Further examination of two FBPs, FbxwD and the Jumonji C protein JcdI, suggested that Skp1 was substituted by other factors in phyA-KO cells. Although a double-KO of jcdI and its paralog jcdH did not affect development, overexpression of JcdI increased its sensitivity to O2. JcdI, a nonheme dioxygenase shown to have physiological O2 dependence, is conserved across protists with its F-box and other domains, and is related to the human oncogene JmjD6. Sensitization of JcdI-overexpression cells to O2 depended on its dioxygenase activity and other domains, but not its F-box, which may however be the mediator of its reduced levels in WT relative to Skp1 modification mutant cells. The findings suggest that activation of JcdI by O2 is tempered by homeostatic downregulation via PhyA and association with Skp1.


Assuntos
Amoeba , Dictyostelium , Histona Desmetilases com o Domínio Jumonji , Proteínas Quinases Associadas a Fase S , Proteínas Ligases SKP Culina F-Box , Amoeba/enzimologia , Amoeba/genética , Dictyostelium/enzimologia , Dictyostelium/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(42): 26494-26502, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020273

RESUMO

During the progression of ocular diseases such as retinopathy of prematurity and diabetic retinopathy, overgrowth of retinal blood vessels results in the formation of pathological neovascular tufts that impair vision. Current therapeutic options for treating these diseases include antiangiogenic strategies that can lead to the undesirable inhibition of normal vascular development. Therefore, strategies that eliminate pathological neovascular tufts while sparing normal blood vessels are needed. In this study we exploited the hyaloid vascular network in murine eyes, which naturally undergoes regression after birth, to gain mechanistic insights that could be therapeutically adapted for driving neovessel regression in ocular diseases. We found that endothelial cells of regressing hyaloid vessels underwent down-regulation of two structurally related E-26 transformation-specific (ETS) transcription factors, ETS-related gene (ERG) and Friend leukemia integration 1 (FLI1), prior to apoptosis. Moreover, the small molecule YK-4-279, which inhibits the transcriptional and biological activity of ETS factors, enhanced hyaloid regression in vivo and drove Human Umbilical Vein Endothelial Cells (HUVEC) tube regression and apoptosis in vitro. Importantly, exposure of HUVECs to sheer stress inhibited YK-4-279-induced apoptosis, indicating that low-flow vessels may be uniquely susceptible to YK-4-279-mediated regression. We tested this hypothesis by administering YK-4-279 to mice in an oxygen-induced retinopathy model that generates disorganized and poorly perfused neovascular tufts that mimic human ocular diseases. YK-4-279 treatment significantly reduced neovascular tufts while sparing healthy retinal vessels, thereby demonstrating the therapeutic potential of this inhibitor.


Assuntos
Olho/irrigação sanguínea , Proteínas Oncogênicas/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Regulador Transcricional ERG/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Vasos Sanguíneos/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Indóis/farmacologia , Camundongos , Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/metabolismo , Vasos Retinianos/patologia
5.
J Biol Chem ; 295(51): 17486-17496, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33453993

RESUMO

Rhodopsin is a canonical class A photosensitive G protein-coupled receptor (GPCR), yet relatively few pharmaceutical agents targeting this visual receptor have been identified, in part due to the unique characteristics of its light-sensitive, covalently bound retinal ligands. Rhodopsin becomes activated when light isomerizes 11-cis-retinal into an agonist, all-trans-retinal (ATR), which enables the receptor to activate its G protein. We have previously demonstrated that, despite being covalently bound, ATR can display properties of equilibrium binding, yet how this is accomplished is unknown. Here, we describe a new approach for both identifying compounds that can activate and attenuate rhodopsin and testing the hypothesis that opsin binds retinal in equilibrium. Our method uses opsin-based fluorescent sensors, which directly report the formation of active receptor conformations by detecting the binding of G protein or arrestin fragments that have been fused onto the receptor's C terminus. We show that these biosensors can be used to monitor equilibrium binding of the agonist, ATR, as well as the noncovalent binding of ß-ionone, an antagonist for G protein activation. Finally, we use these novel biosensors to observe ATR release from an activated, unlabeled receptor and its subsequent transfer to the sensor in real time. Taken together, these data support the retinal equilibrium binding hypothesis. The approach we describe should prove directly translatable to other GPCRs, providing a new tool for ligand discovery and mutant characterization.


Assuntos
Arrestina/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/metabolismo , Sequência de Aminoácidos , Animais , Fluorescência , Corantes Fluorescentes/química , Luz , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Transdução de Sinais
6.
Arterioscler Thromb Vasc Biol ; 40(2): 365-377, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31852224

RESUMO

OBJECTIVE: In this work, we examine the molecular basis for capillary tube regression and identify key proregressive factors, signaling pathways, and pharmacological antagonists of this process. Approach and Results: We demonstrate that the proinflammatory mediators, IL (interleukin)-1ß, TNF (tumor necrosis factor) α, and thrombin, singly and in combination, are potent regulators of capillary tube regression in vitro. These proregressive factors, when added to endothelial cell-pericyte cocultures, led to selective loss of endothelial cell-lined tube networks, with retention and proliferation of pericytes despite the marked destruction of adjacent capillary tubes. Moreover, treatment of macrophages with the TLR (toll-like receptor) agonists Pam3CSK4 and lipopolysaccharide generates conditioned media with marked proregressive activity, that is completely blocked by a combination of neutralizing antibodies directed to IL-1ß and TNFα but not to other factors. The same combination of blocking antibodies, as well as the anti-inflammatory cytokine IL-10, interfere with macrophage-dependent hyaloid vasculature regression in mice suggesting that proinflammatory cytokine signaling regulates capillary regression in vivo. In addition, we identified a capillary regression signaling signature in endothelial cells downstream of these proregressive agents that is characterized by increased levels of ICAM-1 (intercellular adhesion molecule-1), phospho-p38, and phospho-MLC2 (myosin light chain-2) and decreased levels of phospho-Pak2, acetylated tubulin, phospho-cofilin, and pro-caspase3. Finally, we identified combinations of pharmacological agents (ie, FIST and FISTSB) that markedly rescue the proregressive activities of IL-1ß, TNFα, and thrombin, individually and in combination. CONCLUSIONS: Overall, these new studies demonstrate that the major proinflammatory mediators, IL-1ß, TNFα, and thrombin, are key regulators of capillary tube regression-a critical pathological process regulating human disease.


Assuntos
Capilares/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Trombina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Capilares/patologia , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotélio Vascular/patologia , Feminino , Humanos , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
7.
J Biol Chem ; 293(18): 6915-6924, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29540486

RESUMO

Cardiac energy is produced primarily by oxidation of fatty acids and glucose, with the relative contributions of each nutrient being sensitive to changes in substrate availability and energetic demand. A major contributor to cardiac metabolic flexibility is pyruvate dehydrogenase (PDH), which converts glucose-derived pyruvate to acetyl-CoA within the mitochondria. PDH is inhibited by phosphorylation dependent on the competing activities of pyruvate dehydrogenase kinases (PDK1-4) and phosphatases (PDP1-2). A single high-fat meal increases cardiac PDK4 content and subsequently inhibits PDH activity, reducing pyruvate utilization when abundant fatty acids are available. In this study, we demonstrate that diet-induced increases in PDK4 are reversible and characterize a novel pathway that regulates PDK4 degradation in response to the cardiac metabolic environment. We found that PDK4 degradation is promoted by CoA (CoASH), the levels of which declined in mice fed a high-fat diet and normalized following transition to a control diet. We conclude that CoASH functions as a metabolic sensor linking the rate of PDK4 degradation to fatty acid availability in the heart. However, prolonged high-fat feeding followed by return to a low-fat diet resulted in persistent in vitro sensitivity of PDH to fatty acid-induced inhibition despite reductions in PDK4 content. Moreover, increases in the levels of proteins responsible for ß-oxidation and rates of palmitate oxidation by isolated cardiac mitochondria following long-term consumption of high dietary fat persisted after transition to the control diet. We propose that these changes prime PDH for inhibition upon reintroduction of fatty acids.


Assuntos
Coenzima A/metabolismo , Dieta Hiperlipídica , Miocárdio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Dieta com Restrição de Gorduras , Ácidos Graxos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Oxirredução , Proteínas Serina-Treonina Quinases/genética , Proteólise , Piruvato Desidrogenase Quinase de Transferência de Acetil , RNA Mensageiro/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(42): 11961-11966, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27702898

RESUMO

Here, we describe two insights into the role of receptor conformational dynamics during agonist release (all-trans retinal, ATR) from the visual G protein-coupled receptor (GPCR) rhodopsin. First, we show that, after light activation, ATR can continually release and rebind to any receptor remaining in an active-like conformation. As with other GPCRs, we observe that this equilibrium can be shifted by either promoting the active-like population or increasing the agonist concentration. Second, we find that during decay of the signaling state an active-like, yet empty, receptor conformation can transiently persist after retinal release, before the receptor ultimately collapses into an inactive conformation. The latter conclusion is based on time-resolved, site-directed fluorescence labeling experiments that show a small, but reproducible, lag between the retinal leaving the protein and return of transmembrane helix 6 (TM6) to the inactive conformation, as determined from tryptophan-induced quenching studies. Accelerating Schiff base hydrolysis and subsequent ATR dissociation, either by addition of hydroxylamine or introduction of mutations, further increased the time lag between ATR release and TM6 movement. These observations show that rhodopsin can bind its agonist in equilibrium like a traditional GPCR, provide evidence that an active GPCR conformation can persist even after agonist release, and raise the possibility of targeting this key photoreceptor protein by traditional pharmaceutical-based treatments.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células COS , Chlorocebus aethiops , Ligantes , Luz , Modelos Moleculares , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica/efeitos da radiação , Proteólise , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Retinaldeído/química , Retinaldeído/metabolismo , Rodopsina/agonistas , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo , Relação Estrutura-Atividade , Vitamina A/metabolismo
9.
J Biol Chem ; 292(1): 305-312, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27856638

RESUMO

Cardiac metabolic inflexibility is driven by robust up-regulation of pyruvate dehydrogenase kinase 4 (PDK4) and phosphorylation-dependent inhibition of pyruvate dehydrogenase (PDH) within a single day of feeding mice a high fat diet. In the current study, we have discovered that PDK4 is a short lived protein (t½ ∼ 1 h) and is specifically degraded by the mitochondrial protease Lon. Lon does not rapidly degrade PDK1 and -2, indicating specificity toward the PDK isoform that is a potent modulator of metabolic flexibility. Moreover, PDK4 degradation appears regulated by dissociation from the PDH complex dependent on the respiratory state and energetic substrate availability of mouse heart mitochondria. Finally, we demonstrate that pharmacologic inhibition of PDK4 promotes PDK4 degradation in vitro and in vivo These findings reveal a novel strategy to manipulate PDH activity by selectively targeting PDK4 content through dissociation and proteolysis.


Assuntos
Regulação Enzimológica da Expressão Gênica , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Protease La/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Fosforilação , Protease La/genética , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Complexo Piruvato Desidrogenase/genética
10.
J Biol Chem ; 292(46): 18897-18915, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28928219

RESUMO

Skp1 is a conserved protein linking cullin-1 to F-box proteins in SCF (Skp1/Cullin-1/F-box protein) E3 ubiquitin ligases, which modify protein substrates with polyubiquitin chains that typically target them for 26S proteasome-mediated degradation. In Dictyostelium (a social amoeba), Toxoplasma gondii (the agent for human toxoplasmosis), and other protists, Skp1 is regulated by a unique pentasaccharide attached to hydroxylated Pro-143 within its C-terminal F-box-binding domain. Prolyl hydroxylation of Skp1 contributes to O2-dependent Dictyostelium development, but full glycosylation at that position is required for optimal O2 sensing. Previous studies have shown that the glycan promotes organization of the F-box-binding region in Skp1 and aids in Skp1's association with F-box proteins. Here, NMR and MS approaches were used to determine the glycan structure, and then a combination of NMR and molecular dynamics simulations were employed to characterize the impact of the glycan on the conformation and motions of the intrinsically flexible F-box-binding domain of Skp1. Molecular dynamics trajectories of glycosylated Skp1 whose calculated monosaccharide relaxation kinetics and rotational correlation times agreed with the NMR data indicated that the glycan interacts with the loop connecting two α-helices of the F-box-combining site. In these trajectories, the helices separated from one another to create a more accessible and dynamic F-box interface. These results offer an unprecedented view of how a glycan modification influences a disordered region of a full-length protein. The increased sampling of an open Skp1 conformation can explain how glycosylation enhances interactions with F-box proteins in cells.


Assuntos
Proteínas de Bactérias/metabolismo , Dictyostelium/metabolismo , Proteínas F-Box/metabolismo , Oxigênio/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Configuração de Carboidratos , Dictyostelium/química , Proteínas F-Box/química , Glicopeptídeos/análise , Glicopeptídeos/metabolismo , Glicosilação , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/análise , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Mapas de Interação de Proteínas , Proteínas Quinases Associadas a Fase S/química , Proteínas Ligases SKP Culina F-Box/química , Ubiquitina-Proteína Ligases/química
11.
Glycobiology ; 27(3): 206-212, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28177478

RESUMO

Determining the correct enzymatic activity of putative glycosyltransferases (GTs) can be challenging as these enzymes can utilize multiple donor and acceptor substrates. Upon initial determination of the donor-sugar nucleotide(s), a GT utilizes various acceptor molecules that can then be tested. Here, we describe a quick method to screen sugar-nucleotide donor specificities of GTs utilizing a sensitive, nonradioactive, commercially available bioluminescent uridine diphosphate detection kit. This in vitro method allowed us to validate the sugar-nucleotide donor-substrate specificities of recombinantly expressed human, bovine, bacterial and protozoan GTs. Our approach, which is less time consuming than many traditional assays that utilize radiolabeled sugars and chromatographic separations, should facilitate discovery of novel GTs that participate in diverse biological processes.


Assuntos
Glicosiltransferases/isolamento & purificação , Nucleotídeos/química , Açúcares/química , Animais , Bactérias/enzimologia , Bovinos , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Humanos , Especificidade por Substrato
12.
Lung ; 195(5): 587-594, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28707109

RESUMO

PURPOSE: Cough is a common symptom of pulmonary sarcoidosis. We analyzed the severity of cough and factors associated with cough in a university sarcoidosis clinic cohort. METHODS: Consecutive patients completed the Leicester Cough Questionnaire (LCQ) and a cough visual analog scale (VAS). Clinical and demographic data were collected. Means of the LCQ were analyzed in patients who had multiple visits in terms of constant variables (e.g., race, sex). RESULTS: 355 patients completed the LCQ and VAS at 874 visits. Cough was significantly worse in blacks than whites as determined by the LCQ-mean (16.5 ± 2.6 vs. 17.8 ± 3.0, p < 0.001) and VAS-mean (3.8 ± 3.0 vs. 2.0 ± 2.6, p < 0.0001). Cough was worse in women than men as measured by the VAS-mean (2.7 ± 2.9 vs. 2.2 ± 2.7, p = 0.002), one of the LCQ-mean domains (LCQ-Social-mean 5.4 ± 0.9 vs. 5.2 ± 1.0, p = 0.03), but not the total LCQ-mean score. Cough was not significantly different by either measure in terms of smoking status, age, or spirometric parameter (FVC % predicted, FEV1 % predicted, FEV1/FVC). In a multivariable linear regression analysis, cough was significantly worse in blacks than whites and in pulmonary sarcoidosis than non-pulmonary sarcoidosis with both cough measures, in women than men for the VAS only, and not for spirometric parameters, Scadding stage, or age. The LCQ and VAS were strongly correlated. CONCLUSIONS: In a large university outpatient sarcoidosis cohort, cough was worse in blacks than whites. Cough was not statistically significantly different in terms of age, spirometric measures, Scadding stage, or smoking status. The LCQ correlated strongly with a visual analog scale for cough.


Assuntos
Tosse/fisiopatologia , Sarcoidose Pulmonar/fisiopatologia , Adulto , Negro ou Afro-Americano , Fatores Etários , Idoso , Tosse/etnologia , Tosse/etiologia , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Sarcoidose Pulmonar/complicações , Fatores Sexuais , Inquéritos e Questionários , Escala Visual Analógica , População Branca
13.
J Biol Chem ; 290(7): 4304-18, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25451936

RESUMO

Despite extensive study, how retinal enters and exits the visual G protein-coupled receptor rhodopsin remains unclear. One clue may lie in two openings between transmembrane helix 1 (TM1) and TM7 and between TM5 and TM6 in the active receptor structure. Recently, retinal has been proposed to enter the inactive apoprotein opsin (ops) through these holes when the receptor transiently adopts the active opsin conformation (ops*). Here, we directly test this "transient activation" hypothesis using a fluorescence-based approach to measure rates of retinal binding to samples containing differing relative fractions of ops and ops*. In contrast to what the transient activation hypothesis model would predict, we found that binding for the inverse agonist, 11-cis-retinal (11CR), slowed when the sample contained more ops* (produced using M257Y, a constitutively activating mutation). Interestingly, the increased presence of ops* allowed for binding of the agonist, all-trans-retinal (ATR), whereas WT opsin showed no binding. Shifting the conformational equilibrium toward even more ops* using a G protein peptide mimic (either free in solution or fused to the receptor) accelerated the rate of ATR binding and slowed 11CR binding. An arrestin peptide mimic showed little effect on 11CR binding; however, it stabilized opsin · ATR complexes. The TM5/TM6 hole is apparently not involved in this conformational selection. Increasing its size by mutagenesis did not enable ATR binding but instead slowed 11CR binding, suggesting that it may play a role in trapping 11CR. In summary, our results indicate that conformational selection dictates stable retinal binding, which we propose involves ATR and 11CR binding to different states, the latter a previously unidentified, open-but-inactive conformation.


Assuntos
Retinaldeído/análogos & derivados , Retinaldeído/química , Retinaldeído/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Animais , Arrestina/química , Arrestina/metabolismo , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/genética , Espectrometria de Fluorescência
14.
J Biol Chem ; 289(13): 9076-88, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24550398

RESUMO

The role of Skp1 as an adaptor protein that links Cullin-1 to F-box proteins in E3 Skp1/Cullin-1/F-box protein (SCF) ubiquitin ligases is well characterized. In the social amoeba Dictyostelium and probably many other unicellular eukaryotes, Skp1 is modified by a pentasaccharide attached to a hydroxyproline near its C terminus. This modification is important for oxygen-sensing during Dictyostelium development and is mediated by a HIF-α type prolyl 4-hydroxylase and five sequentially acting cytoplasmic glycosyltransferase activities. Gene disruption studies show that AgtA, the enzyme responsible for addition of the final two galactose residues, in α-linkages to the Skp1 core trisaccharide, is unexpectedly critical for oxygen-dependent terminal development. AgtA possesses a WD40 repeat domain C-terminal to its single catalytic domain and, by use of domain deletions, binding studies, and enzyme assays, we find that the WD40 repeats confer a salt-sensitive second-site binding interaction with Skp1 that mediates novel catalytic activation in addition to simple substrate recognition. In addition, AgtA binds similarly well to precursor isoforms of Skp1 by a salt-sensitive mechanism that competes with binding to an F-box protein and recognition by early modification enzymes, and the effect of binding is diminished when AgtA modifies Skp1. Genetic studies show that loss of AgtA is more severe when an earlier glycosylation step is blocked, and overexpressed AgtA is deleterious if catalytically inactivated. Together, the findings suggest that AgtA mediates non-enzymatic control of unmodified and substrate precursor forms of Skp1 by a binding mechanism that is normally relieved by switch-like activation of its glycosylation function.


Assuntos
Dictyostelium/metabolismo , Galactosiltransferases/química , Galactosiltransferases/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Dictyostelium/enzimologia , Glicosilação , Ligação Proteica , Estrutura Terciária de Proteína
15.
Chemistry ; 21(33): 11779-87, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26179871

RESUMO

Skp1 is a cytoplasmic and nuclear protein, best known as an adaptor of the SCF family of E3-ubiquitin ligases that label proteins for their degradation. Skp1 in Dictyostelium is posttranslationally modified on a specific hydroxyproline (Hyp) residue by a pentasaccharide, which consists of a Fucα1,2-Galß-1,3-GlcNAcα core, decorated with two α-linked Gal residues. A glycopeptide derived form Skp1 was prepared to characterize the α-galactosyltransferase (AgtA) that mediates the addition of the α-Gal moieties, and to develop antibodies suitable for tracking the trisaccharide isoform of Skp1 in cells. A strategy was developed for the synthesis of the core trisaccharide-Hyp based on the use of 2-naphthylmethyl (Nap) ethers as permanent protecting groups to allow late stage installation of the Hyp moiety. Tuning of glycosyl donor and acceptor reactivities was critical for achieving high yields and anomeric selectivities of glycosylations. The trisaccharide-Hyp moiety was employed for the preparation of the glycopeptide using microwave-assisted solid phase peptide synthesis. Enzyme kinetic studies revealed that trisaccharide-Hyp and trisaccharide-peptide are poorly recognized by AgtA, indicating the importance of context provided by the native Skp1 protein for engagement with the active site. The trisaccharide-peptide was a potent immunogen capable of generating a rabbit antiserum that was highly selective toward the trisaccharide isoform of full-length Skp1.


Assuntos
Glicopeptídeos/síntese química , Hidroxiprolina/química , Peptídeos/síntese química , Proteínas Quinases Associadas a Fase S/química , Trissacarídeos/química , Animais , Sequência de Carboidratos , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicosilação , Fenômenos Imunogenéticos , Cinética , Peptídeos/química , Peptídeos/metabolismo , Coelhos , Proteínas Quinases Associadas a Fase S/metabolismo
16.
Clin Microbiol Rev ; 26(4): 781-91, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24092855

RESUMO

The pursuit of timely, cost-effective, accurate, and noninvasive diagnostic methodologies is an endeavor of urgency among clinicians and scientists alike. Detecting pathologies at their earliest stages can significantly affect patient discomfort, prognosis, therapeutic intervention, survival rates, and recurrence. Diagnosis and monitoring often require painful invasive procedures such as biopsies and repeated blood draws, adding undue stress to an already unpleasant experience. The discovery of saliva-based microbial, immunologic, and molecular biomarkers offers unique opportunities to bypass these measures by utilizing oral fluids to evaluate the condition of both healthy and diseased individuals. Here we discuss saliva and its significance as a source of indicators for local, systemic, and infectious disorders. We highlight contemporary innovations and explore recent discoveries that deem saliva a mediator of the body's physiological condition. Additionally, we examine the current state of salivary diagnostics and its associated technologies, future aspirations, and potential as the preferred route of disease detection, monitoring, and prognosis.


Assuntos
Diagnóstico , Infecções/diagnóstico , Doenças da Boca/diagnóstico , Saliva/química , Glândulas Salivares/fisiologia , Proteínas e Peptídeos Salivares/análise , Biomarcadores/análise , Técnicas Biossensoriais , Metilação de DNA , Perfilação da Expressão Gênica , Humanos , Infecções/microbiologia , Microbiota , Boca/microbiologia , Doenças da Boca/microbiologia , Proteômica , Glândulas Salivares/química
17.
Biochemistry ; 53(20): 3294-307, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24724832

RESUMO

Various studies have implicated the concave surface of arrestin in the binding of the cytosolic surface of rhodopsin. However, specific sites of contact between the two proteins have not previously been defined in detail. Here, we report that arrestin shares part of the same binding site on rhodopsin as does the transducin Gα subunit C-terminal tail, suggesting binding of both proteins to rhodopsin may share some similar underlying mechanisms. We also identify two areas of contact between the proteins near this region. Both sites lie in the arrestin N-domain, one in the so-called "finger" loop (residues 67-79) and the other in the 160 loop (residues 155-165). We mapped these sites using a novel tryptophan-induced quenching method, in which we introduced Trp residues into arrestin and measured their ability to quench the fluorescence of bimane probes attached to cysteine residues on TM6 of rhodopsin (T242C and T243C). The involvement of finger loop binding to rhodopsin was expected, but the evidence of the arrestin 160 loop contacting rhodopsin was not. Remarkably, our data indicate one site on rhodopsin can interact with multiple structurally separate sites on arrestin that are almost 30 Å apart. Although this observation at first seems paradoxical, in fact, it provides strong support for recent hypotheses that structural plasticity and conformational changes are involved in the arrestin-rhodopsin binding interface and that the two proteins may be able to interact through multiple docking modes, with arrestin binding to both monomeric and dimeric rhodopsin.


Assuntos
Arrestina/química , Arrestina/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Animais , Sítios de Ligação/fisiologia , Células COS , Bovinos , Chlorocebus aethiops , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
18.
Biochemistry ; 53(10): 1657-69, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24506136

RESUMO

In the social amoeba Dictyostelium, Skp1 is hydroxylated on proline 143 and further modified by three cytosolic glycosyltransferases to yield an O-linked pentasaccharide that contributes to O2 regulation of development. Skp1 is an adapter in the Skp1/cullin1/F-box protein family of E3 ubiquitin ligases that targets specific proteins for polyubiquitination and subsequent proteasomal degradation. To investigate the biochemical consequences of glycosylation, untagged full-length Skp1 and several of its posttranslationally modified isoforms were expressed and purified to near homogeneity using recombinant and in vitro strategies. Interaction studies with the soluble mammalian F-box protein Fbs1/Fbg1/OCP1 revealed preferential binding to the glycosylated isoforms of Skp1. This difference correlated with the increased α-helical and decreased ß-sheet content of glycosylated Skp1s based on circular dichroism and increased folding order based on small-angle X-ray scattering. A comparison of the molecular envelopes of fully glycosylated Skp1 and the apoprotein indicated that both isoforms exist as an antiparallel dimer that is more compact and extended in the glycosylated state. Analytical gel filtration and chemical cross-linking studies showed a growing tendency of less modified isoforms to dimerize. Considering that regions of free Skp1 are intrinsically disordered and Skp1 can adopt distinct folds when bound to F-box proteins, we propose that glycosylation, which occurs adjacent to the F-box binding site, influences the spectrum of energetically similar conformations that vary inversely in their propensity to dock with Fbs1 or another Skp1. Glycosylation may thus influence Skp1 function by modulating F-box protein binding in cells.


Assuntos
Dictyostelium/enzimologia , Proteínas F-Box/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Proteínas Ligases SKP Culina F-Box/química , Proteínas Ligases SKP Culina F-Box/metabolismo , Dictyostelium/química , Dictyostelium/genética , Proteínas F-Box/química , Proteínas F-Box/genética , Glicosilação , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/genética , Proteínas Ligases SKP Culina F-Box/genética
19.
J Biol Chem ; 288(37): 26888-97, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23880764

RESUMO

Recent studies have demonstrated that discriminatory salivary biomarkers can be readily detected upon the development of systemic diseases such as pancreatic cancer, breast cancer, lung cancer, and ovarian cancer. However, the utility of salivary biomarkers for the detection of systemic diseases has been undermined due to the absence of the biological and mechanistic rationale as to why distal diseases from the oral cavity would lead to the development of discriminatory biomarkers in saliva. Here, we examine the hypothesis that pancreatic tumor-derived exosomes are mechanistically involved in the development of pancreatic cancer-discriminatory salivary transcriptomic biomarkers. We first developed a pancreatic cancer mouse model that yielded discriminatory salivary biomarkers by implanting the mouse pancreatic cancer cell line Panc02 into the pancreas of the syngeneic host C57BL/6. The role of pancreatic cancer-derived exosomes in the development of discriminatory salivary biomarkers was then tested by engineering a Panc02 cell line that is suppressed for exosome biogenesis, implanting into the C56BL/6 mouse, and examining whether the discriminatory salivary biomarker profile was ablated or disrupted. Suppression of exosome biogenesis results in the ablation of discriminatory salivary biomarker development. This study supports that tumor-derived exosomes provide a mechanism in the development of discriminatory biomarkers in saliva and distal systemic diseases.


Assuntos
Biomarcadores Tumorais/metabolismo , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/metabolismo , Saliva/metabolismo , Acetilcolina/metabolismo , Animais , Linhagem Celular Tumoral , Esterases/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Pâncreas/metabolismo , Transcriptoma
20.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36865154

RESUMO

Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging action mediates the availability of the chemokine CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we mapped the phosphorylation patterns and determined that GRK5 phosphorylation of ACKR3 dominates ß-arrestin recruitment and chemokine scavenging over GRK2. Co-activation of CXCR4 significantly enhanced phosphorylation by GRK2 through the liberation of Gßγ. These results suggest that ACKR3 'senses' CXCR4 activation through a GRK2-dependent crosstalk mechanism. Surprisingly, we also found that despite the requirement for phosphorylation, and the fact that most ligands promote ß-arrestin recruitment, ß-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet to be determined function for these adapter proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA