Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2310852121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416678

RESUMO

Enterococci are gut microbes of most land animals. Likely appearing first in the guts of arthropods as they moved onto land, they diversified over hundreds of millions of years adapting to evolving hosts and host diets. Over 60 enterococcal species are now known. Two species, Enterococcus faecalis and Enterococcus faecium, are common constituents of the human microbiome. They are also now leading causes of multidrug-resistant hospital-associated infection. The basis for host association of enterococcal species is unknown. To begin identifying traits that drive host association, we collected 886 enterococcal strains from widely diverse hosts, ecologies, and geographies. This identified 18 previously undescribed species expanding genus diversity by >25%. These species harbor diverse genes including toxins and systems for detoxification and resource acquisition. Enterococcus faecalis and E. faecium were isolated from diverse hosts highlighting their generalist properties. Most other species showed a more restricted distribution indicative of specialized host association. The expanded species diversity permitted the Enterococcus genus phylogeny to be viewed with unprecedented resolution, allowing features to be identified that distinguish its four deeply rooted clades, and the entry of genes associated with range expansion such as B-vitamin biosynthesis and flagellar motility to be mapped to the phylogeny. This work provides an unprecedentedly broad and deep view of the genus Enterococcus, including insights into its evolution, potential new threats to human health, and where substantial additional enterococcal diversity is likely to be found.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Humanos , Enterococcus/genética , Antibacterianos/farmacologia , Enterococcus faecium/genética , Enterococcus faecalis/genética , Filogenia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
2.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819373

RESUMO

A protracted outbreak of New Delhi metallo-ß-lactamase (NDM)-producing carbapenem-resistant Klebsiella pneumoniae started in Tuscany, Italy, in November 2018 and continued in 2020 and through 2021. To understand the regional emergence and transmission dynamics over time, we collected and sequenced the genomes of 117 extensively drug-resistant, NDM-producing K. pneumoniae isolates cultured over a 20-mo period from 76 patients at several healthcare facilities in southeast Tuscany. All isolates belonged to high-risk clone ST-147 and were typically nonsusceptible to all first-line antibiotics. Albeit sporadic, resistances to colistin, tigecycline, and fosfomycin were also observed as a result of repeated, independent mutations. Genomic analysis revealed that ST-147 isolates circulating in Tuscany were monophyletic and highly genetically related (including a network of 42 patients from the same hospital and sharing nearly identical isolates), and shared a recent ancestor with clinical isolates from the Middle East. While the blaNDM-1 gene was carried by an IncFIB-type plasmid, our investigations revealed that the ST-147 lineage from Italy also acquired a hybrid IncFIB/IncHIB-type plasmid carrying the 16S methyltransferase armA gene as well as key virulence biomarkers often found in hypervirulent isolates. This plasmid shared extensive homologies with mosaic plasmids circulating globally including from ST-11 and ST-307 convergent lineages. Phenotypically, the carriage of this hybrid plasmid resulted in increased siderophore production but did not confer virulence to the level of an archetypical, hypervirulent K. pneumoniae in a subcutaneous model of infection with immunocompetent CD1 mice. Our findings highlight the importance of performing genomic surveillance to identify emerging threats.


Assuntos
Surtos de Doenças , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Animais , Antibacterianos , Proteínas de Bactérias/genética , Biomarcadores , Carbapenêmicos , Colistina , Biologia Computacional/métodos , Infecção Hospitalar/epidemiologia , Humanos , Itália/epidemiologia , Estimativa de Kaplan-Meier , Funções Verossimilhança , Camundongos , Testes de Sensibilidade Microbiana , Preparações Farmacêuticas , Plasmídeos , Polimorfismo de Nucleotídeo Único , beta-Lactamases/genética
3.
J Appl Microbiol ; 132(2): 949-963, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34365707

RESUMO

AIM: To verify synergistic effects, we investigated the antimicrobial activity of seven phenolic phytochemicals (gallic acid; epicatechin; epigallocatechin gallate; daidzein; genistein; myricetin; 3-hydroxy-6-methoxyflavone) in combination with six antibiotics against multidrug-resistant isolates from the ESKAPE group. METHODS AND RESULTS: To investigate single phytochemicals and combinations, initial microdilution and checkerboard assays were used, followed by time-kill assays to evaluate the obtained results. The research revealed that phenolic compounds on their own resulted in little or no inhibitory effects. During preliminary tests, most of the combinations resulted in indifference (134 [71.3%]). In all, 30 combinations led to antagonism (15.9%); however, 24 showed synergistic effects (12.8%). The main tests resulted in nine synergistic combinations for the treatment of four different bacteria strains, including two substances (3-hydroxy-6-methoxyflavone, genistein) never tested before in such setup. Time-kill curves for combinations with possible synergistic effects confirmed the results against Acinetobacter baumannii as the one with the greatest need for research. CONCLUSIONS: The results highlight the potential use of antibiotic-phytocompound combinations for combating infections with multi-resistant pathogens. Synergistic combinations could downregulate the resistance mechanisms of bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: The aim of this study is to demonstrate the potential use of phenolic natural compounds in combination with conventional antibiotics against multidrug-resistant bacteria of the ESKAPE group. Due to synergistic effects of natural phenolic compounds combined with antibiotics, pathogens that are already resistant to antibiotics could be resensitized as we were able to reduce their MICs back to sensitive. In addition, combination therapies could prevent the development of resistance by reducing the dose of antibiotics. This approach opens up the basis for future development of antimicrobial therapy strategies, which are so urgently needed in the age of multidrug-resistant pathogens.


Assuntos
Acinetobacter baumannii , Catequina , Antibacterianos/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Flavonas , Flavonoides , Ácido Gálico/farmacologia , Genisteína/farmacologia , Isoflavonas , Testes de Sensibilidade Microbiana
4.
J Nat Prod ; 85(10): 2255-2265, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36107719

RESUMO

Screening for biofilm inhibition by purified natural compounds is difficult due to compounds' chemical diversity and limited commercial availability, combined with time- and cost-intensiveness of the laboratory process. In silico prediction of chemical and biological properties of molecules is a widely used technique when experimental data availability is of concern. At the same time, the performance of predictive models directly depends on the amount and quality of experimental data. Driven by the interest in developing a model for prediction of the antibiofilm effect of phenolic natural compounds such as flavonoids, we performed experimental assessment of antibiofilm activity of 320 compounds from this subset of chemicals. The assay was performed once on two Escherichia coli strains on agar in 24-well microtiter plates. The inhibition was assessed visually by detecting morphological changes in macrocolonies. Using the data obtained, we subsequently trained a Bayesian logistic regression model for prediction of biofilm inhibition, which was combined with a similarity-based method in order to increase the overall sensitivity (at the cost of accuracy). The quality of the predictions was subsequently validated by experimental assessment in three independent experiments with two resistant E. coli strains of 23 compounds absent in the initial data set. The validation demonstrated that the model may successfully predict the targeted effect as compared to the baseline accuracy. Using a randomly selected database of commercially available natural phenolics, we obtained approximately 6.0% of active compounds, whereas using our prediction-based substance selection, the percentage of phenolics found to be active increased to 34.8%.


Assuntos
Biofilmes , Escherichia coli , Teorema de Bayes , Fenóis/farmacologia
5.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502111

RESUMO

BACKGROUND: Klebsiella pneumoniae causes severe diseases including sepsis, pneumonia and wound infections and is differentiated into hypervirulent (hvKp) and classic (cKp) pathotypes. hvKp isolates are characterized clinically by invasive and multiple site infection and phenotypically in particular through hypermucoviscosity and increased siderophore production, enabled by the presence of the respective virulence genes, which are partly carried on plasmids. METHODS: Here, we analyzed two K. pneumoniae isolates of a human patient that caused severe multiple site infection. By applying both genomic and phenotypic experiments and combining basic science with clinical approaches, we aimed at characterizing the clinical background as well as the two isolates in-depth. This also included bioinformatics analysis of a chromosomal virulence plasmid integration event. RESULTS: Our genomic analysis revealed that the two isolates were clonal and belonged to sequence type 420, which is not only the first description of this K. pneumoniae subtype in Germany but also suggests belonging to the hvKp pathotype. The latter was supported by the clinical appearance and our phenotypic findings revealing increased siderophore production and hypermucoviscosity similar to an archetypical, hypervirulent K. pneumoniae strain. In addition, our in-depth bioinformatics analysis suggested the insertion of a hypervirulence plasmid in the bacterial chromosome, mediated by a new IS5 family sub-group IS903 insertion sequence designated ISKpn74. CONCLUSION: Our study contributes not only to the understanding of hvKp and the association between hypervirulence and clinical outcomes but reveals the chromosomal integration of a virulence plasmid, which might lead to tremendous public health implications.


Assuntos
Cromossomos Bacterianos/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Plasmídeos/genética , Idoso , Humanos , Infecções por Klebsiella/patologia , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/patogenicidade , Masculino , Recombinação Genética , Sideróforos/metabolismo , Virulência/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-30885899

RESUMO

The pathogenic extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli lineage ST648 is increasingly reported from multiple origins. Our study of a large and global ST648 collection from various hosts (87 whole-genome sequences) combining core and accessory genomics with functional analyses and in vivo experiments suggests that ST648 is a nascent and generalist lineage, lacking clear phylogeographic and host association signals. By including large numbers of ST131 (n = 107) and ST10 (n = 96) strains for comparative genomics and phenotypic analysis, we demonstrate that the combination of multidrug resistance and high-level virulence are the hallmarks of ST648, similar to international high-risk clonal lineage ST131. Specifically, our in silico, in vitro, and in vivo results demonstrate that ST648 is well equipped with biofilm-associated features, while ST131 shows sophisticated signatures indicative of adaption to urinary tract infection, potentially conveying individual ecological niche adaptation. In addition, we used a recently developed NFDS (negative frequency-dependent selection) population model suggesting that ST648 will increase significantly in frequency as a cause of bacteremia within the next few years. Also, ESBL plasmids impacting biofilm formation aided in shaping and maintaining ST648 strains to successfully emerge worldwide across different ecologies. Our study contributes to understanding what factors drive the evolution and spread of emerging international high-risk clonal lineages.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Fatores de Virulência/genética , Virulência/genética , Animais , Antibacterianos/farmacologia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Biofilmes/efeitos dos fármacos , Galinhas/microbiologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Genômica/métodos , Humanos , Tipagem de Sequências Multilocus/métodos , Plasmídeos/genética , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Sequenciamento Completo do Genoma/métodos , beta-Lactamases/genética
7.
PLoS Genet ; 12(9): e1006280, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27618184

RESUMO

The use of whole-genome phylogenetic analysis has revolutionized our understanding of the evolution and spread of many important bacterial pathogens due to the high resolution view it provides. However, the majority of such analyses do not consider the potential role of accessory genes when inferring evolutionary trajectories. Moreover, the recently discovered importance of the switching of gene regulatory elements suggests that an exhaustive analysis, combining information from core and accessory genes with regulatory elements could provide unparalleled detail of the evolution of a bacterial population. Here we demonstrate this principle by applying it to a worldwide multi-host sample of the important pathogenic E. coli lineage ST131. Our approach reveals the existence of multiple circulating subtypes of the major drug-resistant clade of ST131 and provides the first ever population level evidence of core genome substitutions in gene regulatory regions associated with the acquisition and maintenance of different accessory genome elements.


Assuntos
Resistência Microbiana a Medicamentos/genética , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/genética , Evolução Molecular , Escherichia coli/patogenicidade , Infecções por Escherichia coli/genética , Genoma Bacteriano/efeitos dos fármacos , Humanos , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Sequência de DNA
8.
Euro Surveill ; 24(50)2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31847948

RESUMO

From June to October 2019, 17 patients (six infected, 11 colonised) with an extensively drug-resistant (XDR) Klebsiella pneumoniae strain were notified from four Western Pomerania medical facilities. The XDR K. pneumoniae produced carbapenemases NDM-1 and OXA-48, and was only susceptible to chloramphenicol, tigecycline and cefiderocol. Synergistic activity was observed for the combination of aztreonam plus ceftazidime-avibactam. Genomic analyses showed all isolates belonged to K. pneumoniae sequence type 307. Control measures and further investigations are ongoing.


Assuntos
Antibacterianos/farmacologia , Infecção Hospitalar/epidemiologia , Surtos de Doenças , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/isolamento & purificação , beta-Lactamases , Antibacterianos/uso terapêutico , Proteínas de Bactérias , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Análise de Sequência
9.
J Antimicrob Chemother ; 73(6): 1479-1486, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462403

RESUMO

Objectives: Vancomycin-resistant Enterococcus faecium is a leading cause of MDR hospital infection. Two genetically definable populations of E. faecium have been identified: hospital-adapted MDR isolates (clade A) and vancomycin-susceptible commensal strains (clade B). VanN-type vancomycin resistance was identified in two isolates of E. faecium recovered from blood and faeces of an immunocompromised patient. To understand the genomic context in which VanN occurred in the hospitalized patient, the risk it posed for transmission in the hospital and its origins, it was of interest to determine where these strains placed within the E. faecium population structure. Methods: We obtained the genome sequence of the VanN isolates and performed comparative and functional genomics of the chromosome and plasmid content. Results: We show that, in these strains, VanN occurs in a genetic background that clusters with clade B E. faecium, which is highly unusual. We characterized the chromosome and the conjugative plasmid that carries VanN resistance in these strains, pUV24. This plasmid exhibits signatures of in-host selection on the vanN operon regulatory system, which are associated with a constitutive expression of vancomycin resistance. VanN resistance in clade B strains may go undetected by current methods. Conclusions: We report a case of vancomycin resistance in a commensal lineage of E. faecium responsible for an atypical bacteraemia in an immunocompromised patient. A reservoir of transferable glycopeptide resistance in the community could pose a concern for public health.


Assuntos
Enterococcus faecium/genética , Plasmídeos/genética , Resistência a Vancomicina/genética , Enterococos Resistentes à Vancomicina/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Infecção Hospitalar/microbiologia , Enterococcus faecium/efeitos dos fármacos , Fezes/microbiologia , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Hospedeiro Imunocomprometido , Testes de Sensibilidade Microbiana , Óperon , Filogenia , Simbiose , Vancomicina/farmacologia
10.
J Antimicrob Chemother ; 72(5): 1310-1313, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158613

RESUMO

Objectives: ESBL genes in Escherichia coli are mainly plasmid encoded, although recent studies have also shown chromosomal integration, e.g. in clinical E. coli isolates of ST38. As ESBL-producing E. coli are also found in non-clinical settings, we were interested in determining whether chromosomally integrated ESBL genes occur in ST38 isolates from non-clinical habitats, e.g. wildlife. Methods: Four ESBL-producing E. coli isolates of ST38 originating from Mongolian birds of prey sampled in 2015 were subjected to a detailed analysis in terms of phenotypic resistance, plasmid profiling and WGS, followed by the determination of genotypic resistance factors including the chromosomal integration of ESBL and carbapenemase genes. Results: Results based on phenotypic and genotypic plasmid profiling, contiguous sequence (contig) sizes and PCR analysis of flanking insertion site regions showed that three of four ST38 isolates harboured chromosomally encoded bla CTX-M genes of three different types ( bla CTX-M-14 , bla CTX-M-15 and bla CTX-M-24 ) that were inserted into three different chromosomal locations. A comparison of WGS data with ST38 isolates from a clinical outbreak in the UK indicated only low numbers of core-genome SNPs detected among one Mongolian wild bird isolate and eight clinical isolates from the UK. Conclusions: The chromosomal integration of bla CTX-M genes in E. coli isolates of ST38 appears to be common and is likely independent of antimicrobial selective pressure in clinical environments. Our data corroborate the zoonotic potential of environmental isolates of ESBL-producing E. coli , which harbour stably integrated, chromosomally encoded resistance factors.


Assuntos
Aves/microbiologia , Cromossomos Bacterianos/genética , Escherichia coli/genética , beta-Lactamases/genética , Animais , Animais Selvagens/microbiologia , Antibacterianos/farmacologia , Cloaca/microbiologia , DNA Bacteriano/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Genótipo , Humanos , Mongólia/epidemiologia , Plasmídeos/genética , Reação em Cadeia da Polimerase
11.
Environ Microbiol ; 17(9): 3352-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25684458

RESUMO

We report the population structure and dynamics of one Escherichia coli population of wild mallard ducks in their natural environment over four winter seasons, following the characterization of 100 isolates each consecutive season. Macro-restriction analysis was used to define isolates variously as multi- or 1-year pulsed-field gel electrophoresis (PFGE) types. Isolates were characterized genotypically based on virulence-associated genes (VAGs), phylogenetic markers, and phenotypically based on haemolytic activity, antimicrobial resistance, adhesion to epithelial cells, microcin production, motility and carbohydrate metabolism. Only 12 out of 220 PFGE types were detectable over more than one winter, and classified as multi-year PFGE types. There was a dramatic change of PFGE types within two winter seasons. Nevertheless, the genetic pool (VAGs) and antimicrobial resistance pattern remained remarkably stable. The high diversity and dynamics of this E. coli population were also demonstrated by the occurrence of PFGE subtypes and differences between isolates of one PFGE type (based on VAGs, antimicrobial resistance and adhesion rates). Multi- and 1-year PFGE types differed in antimicrobial resistance, VAGs and adhesion. Other parameters were not prominent colonization factors. In conclusion, the high diversity, dynamics and stable genetic pool of an E. coli population seem to enable their successful colonization of host animal population over time.


Assuntos
Patos/microbiologia , Escherichia coli/classificação , Intestinos/microbiologia , Animais , Aderência Bacteriana/fisiologia , Metabolismo dos Carboidratos/fisiologia , Farmacorresistência Bacteriana , Eletroforese em Gel de Campo Pulsado , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Alemanha , Testes de Sensibilidade Microbiana , Filogenia , População , Estações do Ano , Virulência/genética
12.
J Antimicrob Chemother ; 69(5): 1224-30, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24398338

RESUMO

OBJECTIVES: To discern the relevance of ST648 extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli as a putative new group of multiresistant and extraintestinal pathogenic strains in animals, its frequency, ESBL types, antimicrobial resistance patterns and virulence gene (VG) profiles should be determined and compared with ST131 strains from the same collection of strains. METHODS: ESBL-producing E. coli isolates (n = 1152), consecutively sampled from predominantly dogs, cats and horses between 2008 and 2011, were assigned to a phylogenetic group by PCR. Partial multilocus sequence typing was performed for group D and B2 strains and strains presumed to be D-ST648 and B2-ST131 were fully typed. ESBL genes and extraintestinal pathogenic E. coli (ExPEC)-like VGs were characterized by PCR and sequence analysis and antimicrobial resistance was determined by broth dilution. Clonal analysis was done by PFGE. RESULTS: Forty (3.5%) ESBL-producing E. coli were determined as D-ST648, whereas B2-ST131 isolates occurred less frequently (2.8%). Although the predominant ESBL type in both groups was CTX-M-15 (72.5% versus 46.9%), ST648 strains from companion animals and horses displayed a lower variety of ESBL types (CTX-M-1, -3, -14, -15 and -61 versus CTX-M-1,-2,-14,-15,-27 and -55 and SHV-12). In contrast to ST131 strains, a higher proportion of ST648 strains showed resistance to most non-ß-lactam antibiotics. Overall, VGs were less abundant in ST648 strains, although some strains had VG profiles comparable to those of ST131 strains. ExPEC-associated serotype O1:H6 was predominant (46.8%) among the ST648 strains. Some PFGE clusters comprised ST648 isolates from pets, horses and wild birds and humans included from previous studies. CONCLUSIONS: Our findings demonstrate that certain subgroups of E. coli D-ST648-CTX-M may represent a novel genotype that combines multiresistance, extraintestinal virulence and zoonotic potential.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/classificação , Escherichia coli/enzimologia , beta-Lactamases/genética , Animais , Antibacterianos/farmacologia , Gatos , Cães , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Genótipo , Cavalos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Animais de Estimação , Fenótipo , Reação em Cadeia da Polimerase , Fatores de Virulência/genética
13.
JAC Antimicrob Resist ; 6(2): dlae021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38449514

RESUMO

Background: MDR pathogens including ESBL- and/or carbapenemase-producing Enterobacterales (ESBL-PE and CPE) increasingly occur worldwide in the One Health context. Objectives: This proof-of-principle study investigated the occurrence of ESBL-PE in surface water in the Ashanti Region in Ghana, sub-Saharan Africa (SSA), and investigated their additional genotypic and phenotypic antimicrobial resistance features as part of the Surveillance Outbreak Response Management and Analysis System (SORMAS). Methods: From 75 water samples overall, from nine small to medium-sized river streams and one pond spatially connected to a channelled water stream in the greater area of Kumasi (capital of the Ashanti Region in Ghana) in 2021, we isolated 121 putative ESBL-PE that were subsequently subjected to in-depth genotypic and phenotypic analysis. Results: Of all 121 isolates, Escherichia coli (70.25%) and Klebsiella pneumoniae (23.14%) were the most prevalent bacterial species. In addition to ESBL enzyme-production of mostly the CTX-M-15 type, one-fifth of the isolates carried carbapenemase genes including blaNDM-5. More importantly, susceptibility testing not only confirmed phenotypic carbapenem resistance, but also revealed two isolates resistant to the just recently approved last-resort antibiotic cefiderocol. In addition, we detected several genes associated with heavy metal resistance. Conclusions: ESBL-PE and CPE occur in surface water sources in and around Kumasi in Ghana. Further surveillance and research are needed to not only improve our understanding of their exact prevalence and the reservoir function of water sources in SSA but should include the investigation of cefiderocol-resistant isolates.

14.
Front Cell Infect Microbiol ; 14: 1372704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601740

RESUMO

In this study, we characterized a Klebsiella pneumoniae strain in a patient with shrapnel hip injury, which resulted in multiple phenotypic changes, including the formation of a small colony variant (SCV) phenotype. Although already described since the 1960s, there is little knowledge about SCV phenotypes in Enterobacteriaceae. The formation of SCVs has been recognized as a bacterial strategy to evade host immune responses and compromise the efficacy of antimicrobial therapies, leading to persistent and recurrent courses of infections. In this case, 14 isolates with different resisto- and morpho-types were distinguished from the patient's urine and tissue samples. Whole genome sequencing revealed that all isolates were clonally identical belonging to the K. pneumoniae high-risk sequence type 147. Subculturing the SCV colonies consistently resulted in the reappearance of the initial SCV phenotype and three stable normal-sized phenotypes with distinct morphological characteristics. Additionally, an increase in resistance was observed over time in isolates that shared the same colony appearance. Our findings highlight the complexity of bacterial behavior by revealing a case of phenotypic "hyper-splitting" in a K. pneumoniae SCV and its potential clinical significance.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Fenótipo , Sequenciamento Completo do Genoma , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Klebsiella/microbiologia
15.
Front Cell Infect Microbiol ; 14: 1411286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947124

RESUMO

Background: Convergence of Klebsiella pneumoniae (KP) pathotypes has been increasingly reported in recent years. These pathogens combine features of both multidrug-resistant and hypervirulent KP. However, clinically used indicators for hypervirulent KP identification, such as hypermucoviscosity, appear to be differentially expressed in convergent KP, potential outbreak clones are difficult to identify. We aimed to fill such knowledge gaps by investigating the temperature dependence of hypermucoviscosity and virulence in a convergent KP strain isolated during a clonal outbreak and belonging to the high-risk sequence type (ST)307. Methods: Hypermucoviscosity, biofilm formation, and mortality rates in Galleria mellonella larvae were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C) and with various phenotypic experiments including electron microscopy. The underlying mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid copy numbers, and transcriptomics. Results: Our results show a temperature-dependent switch above 37°C towards a hypermucoviscous phenotype, consistent with increased biofilm formation and in vivo mortality, possibly reflecting a bacterial response to fever-like conditions. Furthermore, we observed an increase in plasmid copy number for a hybrid plasmid harboring carbapenemase and rmpA genes. However, transcriptomic analysis revealed no changes in rmpA expression at higher temperatures, suggesting alternative regulatory pathways. Conclusion: This study not only elucidates the impact of elevated temperatures on hypermucoviscosity and virulence in convergent KP but also sheds light on previously unrecognized aspects of its adaptive behavior, underscoring its resilience to changing environments.


Assuntos
Biofilmes , Infecções por Klebsiella , Klebsiella pneumoniae , Temperatura , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/classificação , Biofilmes/crescimento & desenvolvimento , Virulência/genética , Animais , Infecções por Klebsiella/microbiologia , Larva/microbiologia , Plasmídeos/genética , Mariposas/microbiologia , Humanos , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lepidópteros/microbiologia , Viscosidade , Fenótipo , Perfilação da Expressão Gênica
16.
Sci Rep ; 14(1): 9929, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688984

RESUMO

The aim of the present study was to determine if colostrum and the equipment for harvesting and feeding colostrum are sources of fecal ESBL/AmpC-producing Escherichia coli (ESBL/AmpC-E. coli) in calves. Therefore, 15 male calves fed with pooled colostrum on a dairy farm and held individually in an experimental barn, the colostrum pool and the equipment for harvesting and feeding colostrum were sampled and analyzed for the occurrence of ESBL/AmpC-E. coli. The ESBL-AmpC-E. coli suspicious isolates were subjected to whole-genome sequence analysis. Forty-three of 45 fecal samples were tested positive for ESBL/AmpC-E. coli. In the colostrum sample and in the milking pot, we also found ESBL/AmpC-E. coli. All 45 E. coli isolates were ESBL-producers, mainly commensal sequence type (ST) 10, but also human-extraintestinal pathogenic E. coli ST131 and ST117 were found. The clonal identity of six fecal isolates with the ESBL-E. coli isolate from the colostrum and of five fecal isolates with the strain from the milking pot demonstrates that the hygiene of colostrum or the colostrum equipment can play a significant role in the spread of ESBL-E. coli. Effective sanitation procedures for colostrum harvesting and feeding equipment are crucial to reduce the ESBL-E. coli shedding of neonatal dairy calves.


Assuntos
Animais Recém-Nascidos , Colostro , Escherichia coli , Fezes , beta-Lactamases , Animais , Colostro/microbiologia , Bovinos , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Fezes/microbiologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Masculino , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Feminino , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
17.
Animals (Basel) ; 13(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36830371

RESUMO

Extended spectrum beta-lactamase (ESBL)-producing Escherichia coli are an emerging problem in veterinary and human medicine. Our study concentrated on the estimation of the prevalence and factors associated with the carriage of ESBL-producing E. coli in dogs who visited a veterinary clinic in northern Germany in 2017. For this reason, 1000 patients (healthy and sick dogs) were tested, resulting in 1000 samples originating from rectal swabs. Additional data were collected using a self-reported questionnaire that was completed by the dog owner. Factors associated with ESBL carriage were considered for further modeling if p < 0.05 using a two-sided Fisher test. Using a backward elimination procedure, the variables for the final multivariable logistic regression model were identified. In total, 8.9% of the dogs tested were positive for carriage of ESBL-producing E. coli. Seven factors were associated with the colonization of dogs with ESBL-E. coli within the multivariable model, namely husbandry system (p = 0.0019, OR = 3.00; 95% CI: 1.50-6.00), contact with puppies (p = 0.0044, OR = 2.43; 95% CI: 1.32-4.46), feeding of raw meat (p = 0.011, OR = 2.28; 95% CI: 1.21-4.31), food residues (p = 0.0151, OR = 2.31; 95% CI: 1.18-4.53) and food supplements (p = 0.0487, OR = 0.426; 95% CI: 0.18-0.96), and antibiotic treatments of dogs (p = 0.0005, OR = 3.030; 95% CI: 1.62-5.68) or owners (p = 0.041, OR = 2.74; 95% CI: 1.04-7.19) prior to the study. These factors refer to the animals themselves as well as to the owners and their habits or medical treatments. Although the causality and direction of transmission from owners to their dogs cannot be proven, the factor of antibiotic treatment of the owner is clearly associated with the dog's status.

18.
Microorganisms ; 11(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985386

RESUMO

Wastewater monitoring became a promising solution in the early detection of outbreaks. Despite the achievements in the identification of pathogens in wastewater using real-time PCR, there is still a lack of reliable rapid nucleic acid extraction protocols. Therefore, in this study, samples were subjected to alkali, proteinase K and/or bead-beating followed by reverse purification magnetic beads-based separation. Wastewater samples spiked with S. aureus, E. coli and C. parvum were used as examples for Gram-positive and -negative bacteria and protozoa, respectively. All results were compared with a spin column technology as a reference method. Proteinase K with bead beating (vortexing with 0.1 mm glass beads for three minutes) was particularly successful for bacterial DNA extraction (three- to five-fold increase). The most useful extraction protocol for protozoa was pre-treatment with proteinase K (eight-fold increase). The selected methods were sensitive as far as detecting one bacterial cell per reaction for S. aureus, ten bacterial cells for E. coli and two oocysts for C. parvum. The extraction reagents are cold chain independent and no centrifuge or other large laboratory equipment is required to perform DNA extraction. A controlled validation trial is needed to test the effectiveness at field levels.

19.
Front Microbiol ; 14: 1232039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731930

RESUMO

Multidrug-resistant gram-negative pathogens such as Escherichia coli have become increasingly difficult to treat and therefore alternative treatment options are needed. Targeting virulence factors like biofilm formation could be one such option. Inhibition of biofilm-related structures like curli and cellulose formation in E. coli has been shown for different phenolic natural compounds like epigallocatechin gallate. This study demonstrates this effect for other structurally unrelated phenolics, namely octyl gallate, scutellarein and wedelolactone. To verify whether these structurally different compounds influence identical pathways of biofilm formation in E. coli a broad comparative RNA-sequencing approach was chosen with additional RT-qPCR to gain initial insights into the pathways affected at the transcriptomic level. Bioinformatical analysis of the RNA-Seq data was performed using DESeq2, BioCyc and KEGG Mapper. The comparative bioinformatics analysis on the pathways revealed that, irrespective of their structure, all compounds mainly influenced similar biological processes. These pathways included bacterial motility, chemotaxis, biofilm formation as well as metabolic processes like arginine biosynthesis and tricarboxylic acid cycle. Overall, this work provides the first insights into the potential mechanisms of action of novel phenolic biofilm inhibitors and highlights the complex regulatory processes of biofilm formation in E. coli.

20.
Sci Rep ; 13(1): 19025, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923898

RESUMO

Hypervirulent Klebsiella pneumoniae strains (hvKp) can cause invasive community-acquired infections in healthy patients of all ages. In this study, the prevalence of putative hvKp in a German tertiary center was investigated and hvKp were characterized by phenotypic and molecular assays. All K. pneumoniae isolates in routine microbiological diagnostics from a single center were screened by string-testing over a period of 6 months. String-test positive (≥ 0.5 mm) isolates were re-evaluated on different media and under various conditions (aerobe, anaerobe). For string-test positive isolates, genes (magA, iutA, rmpA and rmpA2) associated with hypermucoviscosity and hypervirulence were amplified by multiplex PCR. PCR-positive isolates were subjected to whole-genome sequencing and sedimentation and biofilm formation assays. From 1310 screened K. pneumoniae isolates in clinical routine 100 isolates (7.6%) were string test positive. From these, 9% (n = 9) were defined as putative hvKp (string-test+/PCR+). Highest rate of string-test-positive isolates was observed on MacConkey agar under aerobic conditions. Amongst these nine putative hvKp isolates, the international lineage ST23 carrying hvKp-plasmid pKpVP-1 was the most common, but also a rare ST86 with pKpVP-2 was identified. All nine isolates showed hypermucoviscosity and weak biofilm formation. In conclusion, 9% of string-positive, respectively 0.69% of all K. pneumoniae isolates from routine were defined as putative hypervirulent. MacConkey agar was the best medium for hvKp screening.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Fatores de Virulência/genética , Virulência/genética , Ágar , Reação em Cadeia da Polimerase Multiplex , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA