Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Nature ; 627(8002): 116-122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355803

RESUMO

Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments.


Assuntos
Biodiversidade , Metabolismo Energético , Cadeia Alimentar , Floresta Úmida , Animais , Artrópodes/metabolismo , Bactérias/metabolismo , Aves/metabolismo , Sequestro de Carbono , Fezes , Fungos/metabolismo , Indonésia , Oligoquetos/metabolismo , Compostos Orgânicos/metabolismo , Óleo de Palmeira , Borracha , Solo/química , Clima Tropical
2.
Nature ; 618(7964): 316-321, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225981

RESUMO

In the United Nations Decade on Ecosystem Restoration1, large knowledge gaps persist on how to increase biodiversity and ecosystem functioning in cash crop-dominated tropical landscapes2. Here, we present findings from a large-scale, 5-year ecosystem restoration experiment in an oil palm landscape enriched with 52 tree islands, encompassing assessments of ten indicators of biodiversity and 19 indicators of ecosystem functioning. Overall, indicators of biodiversity and ecosystem functioning, as well as multidiversity and ecosystem multifunctionality, were higher in tree islands compared to conventionally managed oil palm. Larger tree islands led to larger gains in multidiversity through changes in vegetation structure. Furthermore, tree enrichment did not decrease landscape-scale oil palm yield. Our results demonstrate that enriching oil palm-dominated landscapes with tree islands is a promising ecological restoration strategy, yet should not replace the protection of remaining forests.


Assuntos
Biodiversidade , Produtos Agrícolas , Recuperação e Remediação Ambiental , Óleo de Palmeira , Árvores , Florestas , Óleo de Palmeira/provisão & distribuição , Árvores/fisiologia , Agricultura/métodos , Nações Unidas , Clima Tropical , Produtos Agrícolas/provisão & distribuição , Recuperação e Remediação Ambiental/métodos
3.
Proc Natl Acad Sci U S A ; 121(17): e2307220121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621138

RESUMO

The expansion of the oil palm industry in Indonesia has improved livelihoods in rural communities, but comes at the cost of biodiversity and ecosystem degradation. Here, we investigated ways to balance ecological and economic outcomes of oil palm cultivation. We compared a wide range of production systems, including smallholder plantations, industrialized company estates, estates with improved agronomic management, and estates with native tree enrichment. Across all management types, we assessed multiple indicators of biodiversity, ecosystem functions, management, and landscape structure to identify factors that facilitate economic-ecological win-wins, using palm yields as measure of economic performance. Although, we found that yields in industrialized estates were, on average, twice as high as those in smallholder plantations, ecological indicators displayed substantial variability across systems, regardless of yield variations, highlighting potential for economic-ecological win-wins. Reducing management intensity (e.g., mechanical weeding instead of herbicide application) did not lower yields but improved ecological outcomes at moderate costs, making it a potential measure for balancing economic and ecological demands. Additionally, maintaining forest cover in the landscape generally enhanced local biodiversity and ecosystem functioning within plantations. Enriching plantations with native trees is also a promising strategy to increase ecological value without reducing productivity. Overall, we recommend closing yield gaps in smallholder cultivation through careful intensification, whereas conventional plantations could reduce management intensity without sacrificing yield. Our study highlights various pathways to reconcile the economics and ecology of palm oil production and identifies management practices for a more sustainable future of oil palm cultivation.


Assuntos
Arecaceae , Óleos Industriais , Ecossistema , Florestas , Biodiversidade , Agricultura , Árvores , Óleo de Palmeira , Conservação dos Recursos Naturais
4.
Mol Ecol ; : e17351, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712904

RESUMO

Lignocellulose is a major component of vascular plant biomass. Its decomposition is crucial for the terrestrial carbon cycle. Microorganisms are considered primary decomposers, but evidence increases that some invertebrates may also decompose lignocellulose. We investigated the taxonomic distribution and evolutionary origins of GH45 hydrolases, important enzymes for the decomposition of cellulose and hemicellulose, in a collection of soil invertebrate genomes. We found that these genes are common in springtails and oribatid mites. Phylogenetic analysis revealed that cellulase genes were acquired early in the evolutionary history of these groups. Domain architectures and predicted 3D enzyme structures indicate that these cellulases are functional. Patterns of presence and absence of these genes across different lineages prompt further investigation into their evolutionary and ecological benefits. The ubiquity of cellulase genes suggests that soil invertebrates may play a role in lignocellulose decomposition, independently or in synergy with microorganisms. Understanding the ecological and evolutionary implications might be crucial for understanding soil food webs and the carbon cycle.

5.
Glob Chang Biol ; 30(7): e17411, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001641

RESUMO

Humans have substantially transformed the global land surface, resulting in the decline in variation in biotic communities across scales, a phenomenon known as "biological homogenization." However, different biota are affected by biological homogenization to varying degrees, but this variation and the underlying mechanisms remain little studied, particularly in soil systems. To address this topic, we used metabarcoding to investigate the biogeography of soil protists and their prey/hosts (prokaryotes, fungi, and meso- and macrofauna) in three human land-use ecosystem types (farmlands, residential areas, and parks) and natural forest ecosystems across subtropical and temperate regions in China. Our results showed that the degree of community homogenization largely differed between taxa and functional groups of soil protists, and was strongly and positively linked to their colonization ability of human land-use systems. Removal analysis showed that the introduction of widespread, generalist taxa (OTUs, operational taxonomic units) rather than the loss of narrow-ranged, specialist OTUs was the major cause of biological homogenization. This increase in generalist OTUs seemingly alleviated the negative impact of land use on specialist taxa, but carried the risk of losing functional diversity. Finally, homogenization of prey/host biota and environmental conditions were also important drivers of biological homogenization in human land-use systems, with their importance being more pronounced in phagotrophic than parasitic and phototrophic protists. Overall, our study showed that the variation in biological homogenization strongly depends on the colonization ability of taxa in human land-use systems, but is also affected by the homogenization of resources and environmental conditions. Importantly, biological homogenization is not the major cause of the decline in the diversity of soil protists, and conservation and study efforts should target at taxa highly sensitive to local extinction, such as parasites.


Assuntos
Biodiversidade , Solo , China , Solo/química , Ecossistema , Microbiologia do Solo , Atividades Humanas , Humanos , Fungos , Florestas
6.
Oecologia ; 204(3): 491-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265599

RESUMO

Climate change will likely increase habitat loss of endemic tree species and drives forest conversion in mountainous forests. Elevation gradients provide the opportunity to predict possible consequences of such changes. While species compositions of various taxa have been investigated along elevation gradients, data on trophic changes in soil-dwelling organisms are scarce. Here, we investigated trophic changes of the Collembola communities along the northern slope of Changbai Mountain, China. We sampled Collembola in primary forests at seven elevations (800-1700 m asl). We measured individual body lengths and bulk stable isotopes on species level. We further categorized Collembola species into life forms. The community-weighted means of Δ15N and Δ13C values as well as minimum Δ15N values and isotopic uniqueness of Collembola communities increased with increasing elevation, while the range of Δ15N values decreased. Maximum and minimum of Δ13C values differed between elevations but showed no linear trend. Further, Δ15N values of Collembola species occurring across all elevations increased with elevation. Changes in Δ15N values with elevation were most pronounced in hemiedaphic species, while Δ13C values increased strongest with elevation in euedaphic species. Δ15N values increased with decreasing body size in hemiedaphic and euedaphic species. Overall, the results suggest that Collembola species functioning as primary decomposers at lower elevations shift towards functioning as secondary decomposers or even predators or scavengers at higher elevation forests. The results further indicate that access to alternative food resources depends on Collembola life form as well as body size and varies between ecosystems.


Assuntos
Ecossistema , Florestas , Árvores , Isótopos de Carbono/análise , Tamanho Corporal
7.
Oecologia ; 204(1): 133-146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147134

RESUMO

Plant nutrient uptake and productivity are driven by a multitude of factors that have been modified by human activities, like climate change and the activity of decomposers. However, interactive effects of climate change and key decomposer groups like earthworms have rarely been studied. In a field microcosm experiment, we investigated the effects of a mean future climate scenario with warming (+ 0.50 °C to + 0.62 °C) and altered precipitation (+ 10% in spring and autumn, - 20% in summer) and earthworms (anecic-two Lumbricus terrestris, endogeic-four Allolobophora chlorotica and both together within 10 cm diameter tubes) on plant biomass and stoichiometry in two land-use types (intensively used meadow and conventional farming). We found little evidence for earthworm effects on aboveground biomass. However, future climate increased above- (+40.9%) and belowground biomass (+44.7%) of grass communities, which was mainly driven by production of the dominant Festulolium species during non-summer drought periods, but decreased the aboveground biomass (- 36.9%) of winter wheat. Projected climate change and earthworms interactively affected the N content and C:N ratio of grasses. Earthworms enhanced the N content (+1.2%) thereby decreasing the C:N ratio (- 4.1%) in grasses, but only under ambient climate conditions. The future climate treatment generally decreased the N content of grasses (aboveground: - 1.1%, belowground: - 0.15%) and winter wheat (- 0.14%), resulting in an increase in C:N ratio of grasses (aboveground: + 4.2%, belowground: +6.3%) and wheat (+5.9%). Our results suggest that climate change diminishes the positive effects of earthworms on plant nutrient uptakes due to soil water deficit, especially during summer drought.


Assuntos
Ecossistema , Oligoquetos , Humanos , Animais , Oligoquetos/fisiologia , Biomassa , Plantas , Poaceae , Solo
8.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34535550

RESUMO

Sex strongly impacts genome evolution via recombination and segregation. In the absence of these processes, haplotypes within lineages of diploid organisms are predicted to accumulate mutations independently of each other and diverge over time. This so-called "Meselson effect" is regarded as a strong indicator of the long-term evolution under obligate asexuality. Here, we present genomic and transcriptomic data of three populations of the asexual oribatid mite species Oppiella nova and its sexual relative Oppiella subpectinata We document strikingly different patterns of haplotype divergence between the two species, strongly supporting Meselson effect-like evolution and long-term asexuality in O. nova: I) variation within individuals exceeds variation between populations in O. nova but vice versa in O. subpectinata; II) two O. nova sublineages feature a high proportion of lineage-specific heterozygous single-nucleotide polymorphisms (SNPs), indicating that haplotypes continued to diverge after lineage separation; III) the deepest split in gene trees generally separates the two haplotypes in O. nova, but populations in O. subpectinata; and IV) the topologies of the two haplotype trees match each other. Our findings provide positive evidence for the absence of canonical sex over evolutionary time in O. nova and suggest that asexual oribatid mites can escape the dead-end fate usually associated with asexual lineages.


Assuntos
Ácaros/genética , Reprodução Assexuada/genética , Ácaros e Carrapatos/genética , Animais , Evolução Molecular , Variação Genética/genética , Haplótipos/genética , Filogenia
9.
Ecol Lett ; 26(5): 742-753, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36857203

RESUMO

Belowground life relies on plant litter, while its linkage to living roots had long been understudied, and remains unknown in the tropics. Here, we analysed the response of 30 soil animal groups to root trenching and litter removal in rainforest and plantations in Sumatra, and found that roots are similarly important to soil fauna as litter. Trenching effects were stronger in soil than in litter, with an overall decrease in animal abundance in rainforest by 42% and in plantations by 30%. Litter removal little affected animals in soil, but decreased the total abundance by 60% in rainforest and rubber plantations but not in oil palm plantations. Litter and root effects on animal group abundances were explained by body size or vertical distribution. Our study quantifies principle carbon pathways in soil food webs under tropical land use, providing the basis for mechanistic modelling and ecosystem-friendly management of tropical soils.


Assuntos
Ecossistema , Solo , Animais , Floresta Úmida , Cadeia Alimentar , Raízes de Plantas
10.
J Eukaryot Microbiol ; 70(6): e12996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577763

RESUMO

The tropical Andes are a species-rich and nitrogen-limited system, susceptible to increased nitrogen (N) inputs from the atmosphere. However, our understanding of the impacts of increased N input on belowground systems, in particular on protists and their role in nutrient cycling, remains limited. We explored how increased N affects protists in tropical montane rainforests in Ecuador using high-throughput sequencing (HTS) of environmental DNA from two litter layers. In addition, we manipulated the amount of arbuscular mycorrhizal fungi (AMF) and mesofauna, both playing a significant role in N cycling and interacting in complex ways with protist communities. We found that N strongly affected protist community composition in both layers, while mesofauna reduction had a stronger effect on the lower layer. Changes in concentration of the AMF marker lipid had little effect on protists. In both layers, the addition of N increased phagotrophs and animal parasites and decreased plant parasites, while mixotrophs decreased in the upper layer but increased in the lower layer. In the upper layer with higher AMF concentration, mixotrophs decreased, while in the lower layer, photoautotrophs increased and plant parasites decreased. With reduced mesofauna, phagotrophs increased and animal parasites decreased in both layers, while plant parasites increased only in the upper layer. The findings indicate that to understand the intricate response of protist communities to environmental changes, it is critical to thoroughly analyze these communities across litter and soil layers, and to include HTS.


Assuntos
Micorrizas , Animais , Micorrizas/genética , Floresta Úmida , Nitrogênio , Equador , Microbiologia do Solo , Fungos , Eucariotos , Solo , Plantas
11.
J Anim Ecol ; 92(2): 454-465, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36477808

RESUMO

The ecological stoichiometry theory provides a framework to understand organism fitness and population dynamics based on stoichiometric mismatch between organisms and their resources. Recent studies have revealed that different soil animals occupy distinct multidimensional stoichiometric niches (MSNs), which likely determine their specific stoichiometric mismatches and population responses facing resource changes. The goals of the present study are to examine how long-term forest plantations affect multidimensional elemental contents of litter and detritivores and the population size of detritivores that occupy distinct MSNs. We evaluated the contents of 10 elements of two detritivore taxa (lumbricid earthworms and julid millipedes) and their litter resources, quantified their MSNs and the multidimensional stoichiometric mismatches, and examined how such mismatch patterns influence the density and total biomass of detritivores across three forest types spanning from natural forests (oak forest) to plantations (pine and larch forests). Sixty-year pine plantations changed the multidimensional elemental contents of litter, but did not influence the elemental contents of the two detritivore taxa. Earthworms and millipedes exhibited distinct patterns of MSNs and stoichiometric mismatches, but they both experienced severer stoichiometric mismatches in pine plantations than in oak forests and larch plantations. Such stoichiometric mismatches led to lower density and biomass of both earthworms and millipedes in pine plantations. In other words, under conditions of low litter quality and severe stoichiometric mismatches in pine plantations, detritivores maintained their body elemental contents but decreased their population biomass. Our study illustrates the success in using the multidimensional stoichiometric framework to understand the impact of forest plantations on animal population dynamics, which may serve as a useful tool in addressing ecosystem responses to global environmental changes.


Assuntos
Artrópodes , Oligoquetos , Pinus , Animais , Biomassa , Ecossistema , Florestas , Solo
12.
Oecologia ; 203(1-2): 37-51, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37709958

RESUMO

Forest canopies maintain a high proportion of arthropod diversity. The drivers that structure these communities, however, are poorly understood. Therefore, integrative research connecting tree species identity and environmental stand properties with taxonomic and functional community composition of canopy arthropods is required. In this study, we investigated how the taxonomic, functional and trophic composition of arboreal spider communities is affected by tree species composition and associated differences in canopy structure and prey availability in temperate forests. We sampled canopy spiders as well as their potential prey using insecticidal fogging in monospecific and mixed stands of native European beech, native Norway spruce and non-native Douglas fir. Trophic metrics were obtained from stable isotope analysis and structural canopy properties were assessed with mobile laser scanning. Monospecific native spruce stands promoted local canopy spider abundance and diversity, but native beech and beech-conifer mixtures had the highest diversity at landscape scale. Spider community composition differed between monospecific stands, with broadleaf-conifer mixtures mitigating these differences. Irrespective of tree species identity, spider abundance, taxonomic diversity, functional richness and isotopic richness increased in structurally heterogeneous canopies with high prey abundances, but functional evenness and trophic divergence decreased. Our study shows that canopy spiders are differentially affected by tree species identity, canopy structure and prey availability. Broadleaf-conifer mixtures mitigated negative effects of (non-native) conifers, but positive mixture effects were only evident at the landscape scale. Structurally heterogeneous canopies promoted the dominance of only specific trait clusters. This indicates that intermediate heterogeneity might result in high stability of ecological communities.


Assuntos
Picea , Aranhas , Animais , Árvores , Florestas , Noruega , Biodiversidade
13.
Ecol Lett ; 25(5): 1225-1236, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35286010

RESUMO

Despite intensive research on species dissimilarity patterns across communities (i.e. ß-diversity), we still know little about their implications for variation in food-web structures. Our analyses of 50 lake and 48 forest soil communities show that, while species dissimilarity depends on environmental and spatial gradients, these effects are only weakly propagated to the networks. Moreover, our results show that species and food-web dissimilarities are consistently correlated, but that much of the variation in food-web structure across spatial, environmental, and species gradients remains unexplained. Novel food-web assembly models demonstrate the importance of biotic filtering during community assembly by (1) the availability of resources and (2) limiting similarity in species' interactions to avoid strong niche overlap and thus competitive exclusion. This reveals a strong signature of biotic filtering processes during local community assembly, which constrains the variability in structural food-web patterns across local communities despite substantial turnover in species composition.


Assuntos
Biodiversidade , Florestas , Ecossistema , Cadeia Alimentar , Solo
14.
Glob Chang Biol ; 28(16): 4775-4782, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35543252

RESUMO

Microbial necromass is a central component of soil organic matter (SOM), whose management may be essential in mitigating atmospheric CO2 concentrations and climate change. Current consensus regards the magnitude of microbial necromass production to be heavily dependent on the carbon use efficiency of microorganisms, which is strongly influenced by the quality of the organic matter inputs these organisms feed on. However, recent concepts neglect agents relevant in many soils: earthworms. We argue that the activity of earthworms accelerates the formation of microbial necromass stabilized in aggregates and organo-mineral associations and reduces the relevance of the quality of pre-existing organic matter in this process. Earthworms achieve this through the creation of transient hotspots (casts) characterized by elevated contents of bioavailable substrate and the efficient build-up and quick turnover of microbial biomass, thus converting SOM not mineralized in this process into a state more resistant against external disturbances, such as climate change. Promoting the abundance of earthworms may, therefore, be considered a central component of management strategies that aim to accelerate the formation of stabilized microbial necromass in wide locations of the soil commonly not considered hotspots of microbial SOM formation.


Assuntos
Oligoquetos , Solo , Animais , Biomassa , Carbono/química , Solo/química , Microbiologia do Solo
15.
Oecologia ; 196(1): 195-209, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33852071

RESUMO

Forest soil and litter is inhabited by a diverse community of animals, which directly and indirectly rely on dead organic matter as habitat and food resource. However, community composition may be driven by biotic or abiotic forces, and these vary with changes in habitat structure and resource supply associated with forest land use. To evaluate these changes, we compiled comprehensive data on the species composition of soil animal communities and environmental factors in forest types varying in land-use intensity in each of three regions in Germany, i.e., coniferous, young managed, old managed, and unmanaged beech forests. Coniferous forests featured high amounts of leaf litter and low microbial biomass concentrations contrasting in particular unmanaged beech forests. However, soil animal diversity and functional community composition differed little between forest types, indicating resilience against disturbance and forest land use. Structural equation modelling suggested that despite a significant influence of forest management on resource abundance and quality, the biomass of most soil fauna functional groups was not directly affected by forest management or resource abundance/quality, potentially because microorganisms hamper the propagation of nutrients to higher trophic levels. Instead, detritivore biomass depended heavily on soil pH. Macrofauna decomposers thrived at high pH, whereas mesofauna decomposers benefitted from low soil pH, but also from low biomass of macrofauna decomposers, potentially due to habitat modification by macrofauna decomposers. The strong influence of soil pH shows that decomposer communities are structured predominantly by regional abiotic factors exceeding the role of local biotic factors such as forest type.


Assuntos
Cadeia Alimentar , Solo , Animais , Biodiversidade , Florestas , Alemanha , Microbiologia do Solo
16.
Exp Appl Acarol ; 83(3): 375-386, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33646483

RESUMO

Mountain scree habitats are intermediate habitats between the base of the soil and the bedrock. They are composed of a network of small cracks and voids, and are commonly situated at the lower levels of scree slopes. Their environment is defined by empty spaces inside the scree, the absence of light and photoperiod, low temperature, and resource poor conditions. Soil arthropod communities, their trophic structure as well as their use of basal resources in mountain scree are little studied despite the fact that they are important components of these systems. Here, we investigate stable isotope ratios (15N/14N, 13C/12C) of oribatid mites (Oribatida, Acari) to understand their trophic niches and their variation with depth (50 and 75 cm) at two mountain scree sites (Cerdacul Stanciului, Marele Grohotis) in the Romanian Carpathians. Further, we used existing data to investigate the reproductive mode of the species in that habitat, as this may be related to resource availability. We hypothesized that trophic niches of oribatid mites will not differ between the two mountain scree regions but will be affected by depth. We furthermore hypothesized that due to the resource poor conditions oribatid mite species will span a narrow range of trophic levels, and that species are sexual rather than parthenogenetic. Our results showed that (1) oribatid mite trophic structure only slightly differed between the two sites indicating that the trophic ecology of oribatid mites in scree habitats is consistent and predictable, (2) oribatid mite trophic structure did not differ between the two studied soil depths indicating that the structure and availability of resources that were used by oribatid mites in deeper scree habitats varies little with depth, (3) oribatid mite species spanned only three trophic levels indicating that the habitat is rather resource poor, and (4) that all studied oribatid mite species were sexual supporting the view that resource poor conditions favour sexual reproduction.


Assuntos
Artrópodes , Ácaros , Animais , Ecossistema , Isótopos , Solo
17.
J Anim Ecol ; 89(2): 334-346, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31494934

RESUMO

Shifts in densities of apex predators may indirectly affect fundamental ecosystem processes, such as decomposition, by altering patterns of cascading effects propagating through lower trophic levels. These top-down effects may interact with anthropogenic impacts, such as climate change, in largely unknown ways. We investigated how changes in densities of large predatory arthropods in forest leaf-litter communities altered lower trophic levels and litter decomposition. We conducted our experiment in soil communities that had experienced different levels of long-term average precipitation. We hypothesized that altering abundances of apex predators would have stronger effects on soil communities inhabiting dry forests, due to lower secondary productivity and greater resource overexploitation by lower trophic levels compared to wet forests. We experimentally manipulated abundances of the largest arthropod predators (apex predators) in field mesocosms replicated in the leaf-litter community of Iberian beech forests that differed in long-term mean annual precipitation by 25% (three dry forests with MAP < 1,250 mm and four wet forests with MAP > 1,400 mm). After one year, we assessed abundances of soil fauna in lower trophic levels and indirect impacts on leaf-litter decomposition using litter of understorey hazel, Corylus avellana. Reducing densities of large predators had a consistently negative effect on final abundances of the different trophic groups and several taxa within each group. Moreover, large predatory arthropods strongly impacted litter decomposition, and their effect interacted with the long-term annual rainfall experienced by the soil community. In the dry forests, a 50% reduction in the densities of apex predators was associated with a 50% reduction in decomposition. In wet forests, the same reduction in densities of apex soil predators did not alter the rate of litter decomposition. Our results suggest that predators may facilitate lower trophic levels by indirectly reducing competition and resource overexploitation, cascading effects that may be more pronounced in drier forests where conditions have selected for greater competitive ability and more rapid resource utilization. These findings thus provide insights into the functioning of soil invertebrate communities and their role in decomposition, as well as potential consequences of soil community responses to climate change.


Assuntos
Artrópodes , Solo , Animais , Ecossistema , Florestas , Folhas de Planta
18.
Oecologia ; 192(3): 801-812, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32002648

RESUMO

Spiders are important bio-control agents of rice insect pests such as plant- and leafhoppers. To investigate temporal changes in spider prey and variations in prey due to landscape structure around rice fields, carbon and nitrogen stable isotopes of rice field arthropods were analysed over three consecutive sampling dates during the rice cropping season. Initial isotope composition of gnats and midges emerging from submersed rice fields indicates a larval algae diet, while later values suggest a switch to rice-derived carbon. Initial δ13C values of plant- and leafhoppers were higher in fields of rice-heterogeneous landscapes, indicating migration from source populations feeding on C4 grasses into rice fields; later, their δ13C values approached those of rice. Isotope values of web-building and cursorial spiders in the earliest samples indicate aquatic gnat and midge prey. The later shift toward terrestrial herbivore prey was more pronounced for small than for larger species and in rice paddies near permanent vegetation, indicating use of prey from the surrounding landscape. The results suggest that rice field spiders are supported by three different carbon pools: (1) aquatic carbon originating from algae and (2) legacy carbon from previous growing cycles, both incorporated via between-season predation on gnats and midges, and (3) carbon from the current rice season incorporated via herbivore prey. In conclusion, fostering aquatic midge and gnat larvae, e.g. via mulching, and integrating rice fields into rice-heterogeneous landscapes likely strengthens biological control of pest species in rice paddies by supporting high populations of spiders between cropping seasons.


Assuntos
Oryza , Aranhas , Animais , Carbono , Ecossistema , Cadeia Alimentar , Comportamento Predatório
19.
Oecologia ; 193(3): 731-748, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32737568

RESUMO

Gross rates of nitrogen (N) turnover inform about the total N release and consumption. We investigated how plant diversity affects gross N mineralization, microbial ammonium (NH4+) consumption and gross inorganic N immobilization in grasslands via isotopic pool dilution. The field experiment included 74 plots with 1-16 plant species and 1-4 plant functional groups (legumes, grasses, tall herbs, small herbs). We determined soil pH, shoot height, root, shoot and microbial biomass, and C and N concentrations in soil, microbial biomass, roots and shoots. Structural equation modeling (SEM) showed that increasing plant species richness significantly decreased gross N mineralization and microbial NH4+ consumption rates via increased root C:N ratios. Root C:N ratios increased because of the replacement of legumes (low C:N ratios) by small herbs (high C:N ratios) and an increasing shoot height, which was positively related with root C:N ratios, with increasing species richness. However, in our SEM remained an unexplained direct negative path from species richness to both N turnover rates. The presence of legumes increased gross N mineralization, microbial NH4+ consumption and gross inorganic N immobilization rates likely because of improved N supply by N2 fixation. The positive effect of small herbs on microbial NH4+ consumption and gross inorganic N immobilization could be attributed to their increased rhizodeposition, stimulating microbial growth. Our results demonstrate that increasing root C:N ratios with increasing species richness slow down the N cycle but also that there must be additional, still unidentified processes behind the species richness effect potentially including changed microbial community composition.


Assuntos
Compostos de Amônio , Nitrogênio , Biodiversidade , Biomassa , Pradaria , Solo
20.
Nature ; 509(7499): 218-21, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24805346

RESUMO

The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.


Assuntos
Biodiversidade , Ciclo do Carbono , Ecossistema , Regiões Árticas , Carbono/metabolismo , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Plantas/metabolismo , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA