Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(16): e2200855, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36471106

RESUMO

Atom transfer radical polymerization (ATRP) of oligo(ethylene oxide) monomethyl ether methacrylate (OEOMA500 ) in water is enabled using CuBr2 with tris(2-pyridylmethyl)amine (TPMA) as a ligand under blue or green-light irradiation without requiring any additional reagent, such as a photo-reductant, or the need for prior deoxygenation. Polymers with low dispersity (D = 1.18-1.25) are synthesized at high conversion (>95%) using TPMA from three different suppliers, while no polymerization occurred with TPMA is synthesized and purified in the laboratory. Based on spectroscopic studies, it is proposed that TPMA impurities (i.e., imine and nitrone dipyridine), which absorb blue and green light, can act as photosensitive co-catalyst(s) in a light region where neither pure TPMA nor [(TPMA)CuBr]+ absorbs light.


Assuntos
Aminas , Polímeros , Polímeros/química , Metacrilatos/química , Luz
2.
Angew Chem Int Ed Engl ; 61(43): e202209655, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-35973965

RESUMO

Terminal iron nitrides (Fe≡N) have been proposed as intermediates of Fe-mediated nitrogen fixation, and well-defined synthetic iron nitrides have been characterized in high oxidation states, including FeIV , FeV , and FeVI . This study reports the generation and low temperature characterization of a terminally bound iron(III) nitride, P3 B Fe(N) (P3 B =tris(o-diisopropylphosphinophenyl)borane), which is a proposed intermediate of iron-mediated nitrogen fixation by the P3 B Fe-catalyst system. CW- and pulse EPR spectroscopy (HYSCORE and ENDOR), supported by DFT calculations, help to define a 2 A ground state electronic structure of this C3 -symmetric nitride species, placing the unpaired spin in a sigma orbital along the B-Fe-N vector; this electronic structure is distinct for an iron nitride. The unusual d5 -configuration is stabilized by significant delocalization (≈50 %) of the unpaired electron onto the axial boron and nitrogen ligands, with a majority of the spin residing on boron.


Assuntos
Boranos , Ferro , Ferro/química , Ligantes , Fixação de Nitrogênio , Boro , Espectroscopia de Ressonância de Spin Eletrônica , Nitrogênio/química
3.
J Am Chem Soc ; 142(44): 18963-18970, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33103877

RESUMO

Highly reactive organometallic species that mediate reductive proton-coupled electron transfer (PCET) reactions are an exciting area for development in catalysis, where a key objective focuses on tuning the reactivity of such species. This work pursues ligand-induced activation of a stable organometallic complex toward PCET reactivity. This is studied via the conversion of a prototypical Cp*FeIII-H species, [FeIII(η5-Cp*)(dppe)H]+ (Cp* = C5Me5-, dppe = 1,2-bis(diphenylphosphino)ethane), to a highly reactive, S = 1/2 ring-protonated endo-Cp*H-Fe relative, triggered by the addition of CO. Our assignment of the latter ring-protonated species contrasts with its previous reported formulation, which instead assigned it as a hypervalent 19-electron hydride, [FeIII(η5-Cp*)(dppe)(CO)H]+. Herein, pulse EPR spectroscopy (1,2H HYSCORE, ENDOR) and X-ray crystallography, with corresponding DFT studies, cement its assignment as the ring-protonated isomer, [FeI(endo-η4-Cp*H)(dppe)(CO)]+. A less sterically shielded and hence more reactive exo-isomer can be generated through oxidation of a stable Fe0(exo-η4-Cp*H)(dppe)(CO) precursor. Both endo- and exo-ring-protonated isomers are calculated to have an exceptionally low bond dissociation free energy (BDFEC-H ≈ 29 kcal mol-1 and 25 kcal mol-1, respectively) cf. BDFEFe-H of 56 kcal mol-1 for [FeIII(η5-Cp*)(dppe)H]+. These weak C-H bonds are shown to undergo proton-coupled electron transfer (PCET) to azobenzene to generate diphenylhydrazine and the corresponding closed-shell [FeII(η5-Cp*)(dppe)CO]+ byproduct.

4.
Angew Chem Int Ed Engl ; 58(43): 15504-15511, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31465624

RESUMO

We report the characterization of an S= 1/2 iron π-complex, [Fe(η6 -IndH)(depe)]+ (Ind=Indenide (C9 H7- ), depe=1,2-bis(diethylphosphino)ethane), which results via C-H elimination from a transient FeIII hydride, [Fe(η3 :η2 -Ind)(depe)H]+ . Owing to weak M-H/C-H bonds, these species appear to undergo proton-coupled electron transfer (PCET) to release H2 through bimolecular recombination. Mechanistic information, gained from stoichiometric as well as computational studies, reveal the open-shell π-arene complex to have a BDFEC-H value of ≈50 kcal mol-1 , roughly equal to the BDFEFe-H of its FeIII -H precursor (ΔG°≈0 between them). Markedly, this reactivity differs from related Fe(η5 -Cp/Cp*) compounds, for which terminal FeIII -H cations are isolable and have been structurally characterized, highlighting the effect of a benzannulated ring (indene). Overall, this study provides a structural, thermochemical, and mechanistic foundation for the characterization of indenide/indene PCET precursors and outlines a valuable approach for the differentiation of a ring- versus a metal-bound H-atom by way of continuous-wave (CW) and pulse EPR (HYSCORE) spectroscopic measurements.

5.
Chem Sci ; 13(39): 11540-11550, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36320395

RESUMO

Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X-CuII/L). The role of PC was to trigger and drive the polymerization, while X-CuII/L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X-CuII/L, generating CuI/L activator and PC˙+. The ATRP ligand (L) used in excess then reduced the PC˙+, closing the photocatalytic cycle. The continuous reduction of X-CuII/L back to CuI/L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X-CuII/L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ D ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ D ≤ 1.22) under identical conditions.

6.
ACS Catal ; 9(5): 4286-4295, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31467770

RESUMO

Despite their proposed accumulation at the Fe sites of the FeMo-cofactor of MoFe-nitrogenase, the presence of hydride ligands in molecular model systems capable of the nitrogen reduction reaction (N2RR) appears to diminish the catalytic N2-to-NH3 conversion. We find that for an iron-based system bearing the trisphosphine ligand P2PPh, a dramatic difference in yields is observed for N2RR catalyzed by precatalysts with zero, one, or two hydride ligands; however, irradiating the three different catalysts with a mercury lamp results in similar yields. Although the efficacy for N2RR versus the hydrogen evolution reaction (HER) is modest for this system by comparison to certain iron (and other metal) catalysts, the system provides an opportunity to study the role of hydrides in the selectivity for N2RR versus HER, which is a central issue in catalyst design. Stochiometric reactions with hydride containing precatalysts reveal a hydrogen evolution cycle in which no nitrogen fixation occurs. Irradiation of the dihydride precatalysts, observed during turnover, results in H2 elimination and formation of (P2PPh)Fe(N2)2, which itself is unreactive with acids at low temperature. N2 functionalization does occur with acids and silyl electrophiles for the reduced species [(P2PPh)Fe(N2)]- and [(P2PPh)Fe(N2)]2-, which have been characterized independently. The requirement of accessing such low formal oxidation states explains the need for strong reductants. The low selectivity of the system for functionalization at Nß versus Fe creates off-path hydride species that participate in unproductive HER, helping to explain the low selectivity for N2RR over HER. The data presented here hence lends further insight into the growing understanding of the selectivity, activity, and required driving force relevant to iron (and other) N2RR catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA